People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kaiser, Simon
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2021Introduction of Photolatent Bases for Locally Controlling Dynamic Exchange Reactions in Thermo-Activated Vitrimerscitations
- 2020Epoxy-anhydride vitrimers from aminoglycidyl resins with high glass transition temperature and efficient stress relaxationcitations
- 2020Design and characterisation of vitrimer-like elastomeric composites from HXNBR rubbercitations
Places of action
Organizations | Location | People |
---|
article
Design and characterisation of vitrimer-like elastomeric composites from HXNBR rubber
Abstract
<p>The present study aims at the incorporation of vitrimer-like properties into elastomeric composites as a promising approach towards the sustainable production of rubber-based materials. In particular, hydrogenated carboxylated nitrile butadiene rubber (HXNBR), as a technically relevant high-performance rubber, is covalently cross-linked with epoxy group-functionalised calcium silicate (Esilicate) across its pending carboxylic acid moieties. Reaction with the reactive functions attached on the filler surface results in the formation of β-hydroxyl ester linkages at the HXNBR-Esilicate interface, which undergo thermo-activated transesterifications in the presence of a suitable catalyst. Topology rearrangements in the composites are confirmed by stress relaxation measurements at elevated temperatures. Comparison with an unfilled reference network reveals that the extent of stress relaxation can be mostly maintained upon the addition of the reactive filler even at large quantities. The Esilicate serves as both cross-linker and reinforcing filler, leading to a significant enhancement of the mechanical properties. This journal is </p>