Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ismael, Ali

  • Google
  • 7
  • 38
  • 185

Lancaster University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024A Comprehensive Study of Structural, Thermal, and Dielectric Properties of Melt-Processed Polypropylene/Ni0.9Zn0.1Fe2O4 Nanocomposites6citations
  • 2023High Seebeck coefficient from isolated oligo-phenyl arrays on single layered graphene <i>via</i> stepwise assembly10citations
  • 2021Optimised power harvesting by controlling the pressure applied to molecular junctions24citations
  • 2020Scale-Up of Room-Temperature Constructive Quantum Interference from Single Molecules to Self-Assembled Molecular-Electronic Films47citations
  • 2020Tuning the thermoelectrical properties of anthracene-based self-assembled monolayers37citations
  • 2020Molecular-scale thermoelectricity: As simple as 'ABC'21citations
  • 2018Thermoelectric Properties of 2,7-Dipyridylfluorene Derivatives in Single-Molecule Junctions40citations

Places of action

Chart of shared publication
Tharwat, Mohamed
1 / 2 shared
Lambert, Colin John
6 / 31 shared
Al-Jobory, Alaa
2 / 2 shared
Wang, Xintai
3 / 4 shared
Junsheng, Wang
1 / 1 shared
Alshehab, Abdullah
1 / 1 shared
Wilkinson, Luke Alexander
1 / 1 shared
Long, Nj
1 / 2 shared
Bennett, Troy L. R.
1 / 1 shared
Almutlg, Ahmad
1 / 1 shared
Robinson, Bj
4 / 13 shared
Cohen, Lf
1 / 6 shared
Alshammari, Majed
1 / 5 shared
Albrecht, Tim
1 / 1 shared
Cohen, Lesley
1 / 2 shared
Long, Nicholas J.
1 / 3 shared
Kolosov, Oleg Victor
1 / 29 shared
Bennett, Troy
1 / 1 shared
Grace, Iain M.
2 / 4 shared
White, Andrew J. P.
1 / 6 shared
Wilkinson, Luke
1 / 1 shared
Hamill, Joseph
1 / 1 shared
Cohen, L. F.
1 / 12 shared
Wilkinson, L. A.
2 / 2 shared
Bennett, T. L. R.
1 / 1 shared
Long, N. J.
2 / 2 shared
Wang, X.
2 / 79 shared
Benett, T. L. R.
1 / 1 shared
Almutlg, A.
1 / 1 shared
Alshammari, M.
1 / 3 shared
Alshehab, A.
1 / 1 shared
Al-Jobory, A.
1 / 1 shared
Rubio-Bollinger, Gabino
1 / 2 shared
Yzambart, Gilles
1 / 3 shared
Rincón-García, Laura
1 / 1 shared
Al-Jobory, Alaa A.
1 / 1 shared
Agraït, Nicolás
1 / 2 shared
Bryce, Martin R.
1 / 3 shared
Chart of publication period
2024
2023
2021
2020
2018

Co-Authors (by relevance)

  • Tharwat, Mohamed
  • Lambert, Colin John
  • Al-Jobory, Alaa
  • Wang, Xintai
  • Junsheng, Wang
  • Alshehab, Abdullah
  • Wilkinson, Luke Alexander
  • Long, Nj
  • Bennett, Troy L. R.
  • Almutlg, Ahmad
  • Robinson, Bj
  • Cohen, Lf
  • Alshammari, Majed
  • Albrecht, Tim
  • Cohen, Lesley
  • Long, Nicholas J.
  • Kolosov, Oleg Victor
  • Bennett, Troy
  • Grace, Iain M.
  • White, Andrew J. P.
  • Wilkinson, Luke
  • Hamill, Joseph
  • Cohen, L. F.
  • Wilkinson, L. A.
  • Bennett, T. L. R.
  • Long, N. J.
  • Wang, X.
  • Benett, T. L. R.
  • Almutlg, A.
  • Alshammari, M.
  • Alshehab, A.
  • Al-Jobory, A.
  • Rubio-Bollinger, Gabino
  • Yzambart, Gilles
  • Rincón-García, Laura
  • Al-Jobory, Alaa A.
  • Agraït, Nicolás
  • Bryce, Martin R.
OrganizationsLocationPeople

article

Tuning the thermoelectrical properties of anthracene-based self-assembled monolayers

  • Cohen, L. F.
  • Lambert, Colin John
  • Wilkinson, L. A.
  • Bennett, T. L. R.
  • Long, N. J.
  • Wang, X.
  • Robinson, Bj
  • Ismael, Ali
Abstract

It is known that the electrical conductance of single molecules can be controlled in a deterministic manner by chemically varying their anchor groups to external electrodes. Here, by employing synthetic methodologies to vary the terminal anchor groups around aromatic anthracene cores, and by forming self-assembled monolayers (SAMs) of the resulting molecules, we demonstrate that this method of control can be translated into cross-plane SAM-on-gold molecular films. The cross-plane conductance of SAMs formed from anthracene-based molecules with four different combinations of anchors are measured to differ by a factor of approximately 3 in agreement with theoretical predictions. We also demonstrate that the Seebeck coefficient of such films can be boosted by more than an order of magnitude by an appropriate choice of anchor groups and that both positive and negative Seebeck coefficients can be realised. This demonstration that the thermoelectric properties of SAMs are controlled by their anchor groups represents a critical step towards functional ultra-thin-film devices for future molecular-scale electronics. © The Royal Society of Chemistry.

Topics
  • impedance spectroscopy
  • gold
  • forming
  • scanning auger microscopy