People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Engels, Tom A. P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024A macroscopic viscoelastic viscoplastic constitutive model for porous polymers under multiaxial loading conditionscitations
- 2023Effect of temperature, rate, and molecular weight on the failure behavior of soft block copoly(ether-ester) thermoplastic elastomerscitations
- 2023Melt-Extruded Thermoplastic Liquid Crystal Elastomer Rotating Fiber Actuatorscitations
- 2023Melt-Extruded Thermoplastic Liquid Crystal Elastomer Rotating Fiber Actuatorscitations
- 2023Photoswitchable Liquid-to-Solid Transition of Azobenzene-Decorated Polysiloxanescitations
- 2023Photoswitchable Liquid-to-Solid Transition of Azobenzene-Decorated Polysiloxanescitations
- 2021Influence of fiber orientation, temperature and relative humidity on the long-term performance of short glass fiber reinforced polyamide 6citations
- 2021NIR–vis–UV Light-Responsive High Stress-Generating Polymer Actuators with a Reduced Creep Ratecitations
- 2020Physical background of the endurance limit in poly(ether ether ketone)citations
- 2020Processing and Properties of Melt Processable UHMW-PE Based Fibers Using Low Molecular Weight Linear Polyethylene'scitations
- 2020Tuning polymer properties of non-covalent crosslinked PDMS by varying supramolecular interaction strengthcitations
- 2020Tuning polymer properties of non-covalent crosslinked PDMS by varying supramolecular interaction strengthcitations
- 2020Stimuli-Responsive Shape Changing Commodity Polymer Composites and Bilayerscitations
- 2019Predicting plasticity-controlled failure of glassy polymerscitations
- 2019Predicting plasticity-controlled failure of glassy polymers:influence of stress-accelerated progressive physical agingcitations
- 2019An untethered magnetic- and light-responsive rotary gripper: shedding light on photoresponsive liquid crystal actuatorscitations
- 2018Predicting long-term crack growth dominated static fatigue based on short-term cyclic testingcitations
- 2018Predicting long-term crack growth dominated static fatigue based on short-term cyclic testingcitations
- 2018Designing multi-layer polymeric nanocomposites for EM shielding in the X-bandcitations
- 2017Future nanocomposites : exploring multifunctional multi-layered architectures
- 2017Photonic shape memory polymer with stable multiple colorscitations
- 2015Yield stress distribution in injection-moulded glassy polymerscitations
- 2012Time-dependent failure of amorphous poly-D,L-lactide : influence of molecular weightcitations
- 2011Criteria to predict the embrittlement of polycarbonatecitations
- 2010Time-dependent failure in load-bearing polymers : a potential hazard in structural applications of polylactidescitations
- 2010Lifetime assessment of load-bearing polymer glasses : an analytical framework for ductile failurecitations
- 2009Improvement of the long-term performance of impact-modified polycarbonate by selected heat treatmentscitations
- 2009Predicting the long-term mechanical performance of polycarbonate from thermal history during injection moldingcitations
- 2009Predicting the yield stress of polymer glasses directly from processing conditions: application to miscible systemscitations
- 2009Numerical simulation of flat-tip micro-indentation of glassy polymers: influence of loading speed and thermodynamic statecitations
- 2008Does the strain hardening modulus of glassy polymers scale with the flow stress?citations
- 2006Indentation: the experimenter's holy grail for small-scale polymer characterization?
- 2005Quantitative prediction of long-term failure of Polycarbonatecitations
Places of action
Organizations | Location | People |
---|
article
Tuning polymer properties of non-covalent crosslinked PDMS by varying supramolecular interaction strength
Abstract
<p>Non-covalently crosslinked polymeric networks are promising materials towards sustainable and recyclable plastics. Here, we present the post-functionalization of poly(dimethyl siloxane) (PDMS) with supramolecular moieties, attached as grafts to the PDMS backbone, to obtain recyclable PDMS networks. We select three different supramolecular motifs that differ in interaction strength and investigate how these differences affect the dynamic behavior of the networks. The introduction of dinitrohydrazones (hydz), which afford weak supramolecular interactions by π-stacking, resulted in a viscous material at room temperature. Stronger self-association was achieved by the introduction of benzene-1,3,5-carboxamides (BTAs) and ureidopyrimidinones (UPys), which self-assemble via triple and quadruple hydrogen bonding, respectively. This resulted in a thermoplastic elastomeric material for BTA-based PDMS and brittle materials for Upy-based PDMS. Time- and temperature-dependent mechanical measurements reveal that the dynamic nature of the supramolecular bonds becomes slower upon increasing the interaction strength. The polymers are fully recyclable by solvation or compression molding without the loss of material properties. Thereby, by using one linear PDMS backbone, we demonstrate how fundamentally different material properties are obtained by changing the supramolecular interaction strength and type of non-covalent crosslinks. These molecular insights broaden the scope and application of PDMS-based sustainable materials.</p>