Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Arnouts, Sven

  • Google
  • 8
  • 28
  • 258

University of Antwerp

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Improving stability of CO₂ electroreduction by incorporating Ag NPs in N-doped ordered mesoporous carbon structures4citations
  • 2023Halide-guided active site exposure in bismuth electrocatalysts for selective CO2 conversion into formic acid152citations
  • 2023Halide-guided active site exposure in bismuth electrocatalysts for selective CO2 conversion into formic acidcitations
  • 2022Waste‐Derived Copper‐Lead Electrocatalysts for CO<sub>2</sub> Reduction15citations
  • 2022Waste-Derived Copper-Lead Electrocatalysts for CO 2 Reduction15citations
  • 2022Waste-Derived Copper-Lead Electrocatalysts for CO2 Reductioncitations
  • 2021Stabilization Effects in Binary Colloidal Cu and Ag Nanoparticle Electrodes under Electrochemical CO2 Reduction Conditions36citations
  • 2021Stabilization Effects in Binary Colloidal Cu and Ag Nanoparticle Electrodes under Electrochemical CO2 Reduction Conditions36citations

Places of action

Chart of shared publication
Breugelmans, Tom
1 / 9 shared
Hoekx, Saskia
1 / 4 shared
Daems, Nick
1 / 8 shared
Bals, Sara
8 / 93 shared
Van Den Hoek, Järi
1 / 2 shared
Yang, Shuang
5 / 5 shared
An, Hongyu
7 / 8 shared
Yu, Xiang
2 / 5 shared
Wang, Hui
5 / 23 shared
Altantzis, Thomas
7 / 16 shared
Ruiter, Jim De
2 / 2 shared
Weckhuysen, Bm Bert
1 / 46 shared
De Ruiter, Jim
3 / 3 shared
Weckhuysen, Bert M.
4 / 17 shared
Xu, Wenjie
3 / 3 shared
Figueiredo, Marta C.
3 / 7 shared
Wu, Longfei
5 / 10 shared
Anastasiadou, Dimitra
3 / 8 shared
Stam, Ward Van Der
2 / 11 shared
Hofmann, Jan, P.
1 / 3 shared
Zhang, Yue
2 / 11 shared
Weckhuysen, B. M.
2 / 4 shared
Kolmeijer, K. E.
2 / 2 shared
Hensen, Emiel, J. M.
1 / 11 shared
Figueiredo, Marta Costa
1 / 14 shared
Hensen, Emiel J. M.
1 / 27 shared
Figueiredo, Marta
1 / 4 shared
Hofmann, J. P.
1 / 5 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Breugelmans, Tom
  • Hoekx, Saskia
  • Daems, Nick
  • Bals, Sara
  • Van Den Hoek, Järi
  • Yang, Shuang
  • An, Hongyu
  • Yu, Xiang
  • Wang, Hui
  • Altantzis, Thomas
  • Ruiter, Jim De
  • Weckhuysen, Bm Bert
  • De Ruiter, Jim
  • Weckhuysen, Bert M.
  • Xu, Wenjie
  • Figueiredo, Marta C.
  • Wu, Longfei
  • Anastasiadou, Dimitra
  • Stam, Ward Van Der
  • Hofmann, Jan, P.
  • Zhang, Yue
  • Weckhuysen, B. M.
  • Kolmeijer, K. E.
  • Hensen, Emiel, J. M.
  • Figueiredo, Marta Costa
  • Hensen, Emiel J. M.
  • Figueiredo, Marta
  • Hofmann, J. P.
OrganizationsLocationPeople

article

Stabilization Effects in Binary Colloidal Cu and Ag Nanoparticle Electrodes under Electrochemical CO2 Reduction Conditions

  • Hofmann, Jan, P.
  • Arnouts, Sven
  • Wu, Longfei
  • An, Hongyu
  • Zhang, Yue
  • Altantzis, Thomas
  • Weckhuysen, B. M.
  • Bals, Sara
  • Kolmeijer, K. E.
  • Hensen, Emiel, J. M.
  • Stam, Ward Van Der
  • Figueiredo, Marta Costa
Abstract

<p>Nanoparticle modified electrodes constitute an attractive way to tailor-make efficient carbon dioxide (CO2) reduction catalysts. However, the restructuring and sintering processes of nanoparticles under electrochemical reaction conditions not only impedes the widespread application of nanoparticle catalysts, but also misleads the interpretation of the selectivity of the nanocatalysts. Here, we colloidally synthesized metallic copper (Cu) and silver (Ag) nanoparticles with a narrow size distribution (&lt;10%) and utilized them in electrochemical CO2 reduction reactions. Monometallic Cu and Ag nanoparticle electrodes showed severe nanoparticle sintering already at low overpotential of -0.8 V vs. RHE, as evidenced by ex situ SEM investigations, and potential-dependent variations in product selectivity that resemble bulk Cu (14% for ethylene at -1.3 V vs. RHE) and Ag (69% for carbon monoxide at -1.0 V vs. RHE). However, by co-deposition of Cu and Ag nanoparticles, a nanoparticle stabilization effect was observed between Cu and Ag, and the sintering process was greatly suppressed at CO2 reducing potentials (-0.8 V vs. RHE). Furthermore, by varying the Cu/Ag nanoparticle ratio, the CO2 reduction reaction (CO2RR) selectivity towards methane (maximum of 20.6% for dense Cu2.5-Ag1 electrodes) and C2 products (maximum of 15.7% for dense Cu1-Ag1 electrodes) can be tuned, which is attributed to a synergistic effect between neighbouring Ag and Cu nanoparticles. We attribute the stabilization of the nanoparticles to the positive enthalpies of Cu-Ag solid solutions, which prevents the dissolution-redeposition induced particle growth under CO2RR conditions. The observed nanoparticle stabilization effect enables the design and fabrication of active CO2 reduction nanocatalysts with high durability.</p>

Topics
  • nanoparticle
  • Deposition
  • impedance spectroscopy
  • Carbon
  • silver
  • scanning electron microscopy
  • copper
  • durability
  • sintering