People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sobotta, Fabian
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2022Block copolymer nanostructures via self-assembly for biomedical applications
- 2022Switchable Electrostatically Templated Polymerizationcitations
- 2022Switchable Electrostatically Templated Polymerizationcitations
- 2021Elucidating preparation-structure relationships for the morphology evolution during the RAFT dispersion polymerization of N-acryloyl thiomorpholinecitations
- 2020One polymer composition, various morphologiescitations
- 2020Unraveling the kinetics of the structural development during polymerization-induced self-assemblycitations
Places of action
Organizations | Location | People |
---|
article
One polymer composition, various morphologies
Abstract
<p>Polymerization-induced self-assembly (PISA) represents a powerful technique for the preparation of nanostructures comprising various morphologies. Herein, we demonstrate that the recently introduced monomer N-acryloylthiomorpholine (NAT) features a unique self-assembly behaviour during an aqueous PISA. The one-pot, aqueous RAFT dispersion polymerization starting from short poly(N-acryloylmorpholine) (PNAM) enables access to all common solution morphologies including spheres, worms, vesicles and lamellae, at very low molar masses (< 8 kDa). Moreover, all these structures can be obtained for the same polymer composition and size by the variation of the polymerization temperature and concentration of the monomer. This exceptional self-assembly behavior is associated with the combination of a high glass transition temperature, excellent water solubility of the monomer, and the early onset of aggregation during the polymerization, which stabilizes the morphology at different stages. This PISA system opens up new opportunities to reproducibly create versatile, functional nanostructures and enables an independent evaluation of morphology-property relationships, as it is exemplarily shown for the oxidative degradation of spherical and wormlike micelles, as well as vesicles.</p>