People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Théato, Patrick
Karlsruhe Institute of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Synthesis of Polyimide-PEO Copolymers: Toward thermally stable solid polymer electrolytes for Lithium-Metal batteriescitations
- 2024Degradation of Styrene-Poly(ethylene oxide)-Based Block Copolymer Electrolytes at the Na and K Negative Electrode Studied by Microcalorimetry and Impedance Spectroscopycitations
- 2023Magnesium Polymer Electrolytes Based on the Polycarbonate Poly(2-butyl-2-ethyltrimethylene-carbonate)
- 2023Improved Route to Linear Triblock Copolymers by Coupling with Glycidyl Ether-Activated Poly(ethylene oxide) Chainscitations
- 2023Photoresponsive Spiropyran and DEGMA‐Based Copolymers with Photo‐Switchable Glass Transition Temperaturescitations
- 2023Poly(ethylene oxide)-grafted Polycarbonates as Solvent-free Polymer Electrolytes for Lithium-Metal Batteries
- 2022Inverse Vulcanization of Norbornenylsilanes: Soluble Polymers with Controllable Molecular Properties via Siloxane Bondscitations
- 2022Synthesis and Characterization of Novel Isosorbide‐Based Polyester Derivatives Decorated with α ‐Acyloxy Amidescitations
- 2022Synthesizing Polyethylene from Polyacrylates: A Decarboxylation Approachcitations
- 2021Synthesis and Post-Polymerization Modification of Poly(N-(4-Vinylphenyl)Sulfonamide)scitations
- 2020The toolbox of porous anodic aluminum oxide–based nanocomposites: from preparation to applicationcitations
- 2020A CO$_{2}$-gated anodic aluminum oxide based nanocomposite membrane for de-emulsificationcitations
Places of action
Organizations | Location | People |
---|
article
A CO$_{2}$-gated anodic aluminum oxide based nanocomposite membrane for de-emulsification
Abstract
A carbon-dioxide-responsive organic–inorganic nanocomposite membrane based on a through-hole anodic aluminum oxide (AAO) template was constructed. The composite was prepared via a surface-initiated reversible addition–fragmentation chain-transfer (SI-RAFT) polymerization strategy to achieve the grafting of poly(methyl methacrylate-co-2-(diethylamino)ethyl methacrylate) brushes on the AAO membrane. The grafted polymer chain length could be controlled based on the feed ratio between the free chain transfer agent (CTA) and reactive monomer, e.g., methyl methacrylate and 2-(diethylamino)ethyl methacrylate, resulting in a membrane that features adjustable water permeability. Importantly, the membrane pore size and surface wettability could be switched from hydrophobic to hydrophilic upon the introduction of carbon dioxide and nitrogen gases. This allowed for the nanocomposite membrane to be utilized for controlled water flux and oil/water emulsion separation. The simple fabrication methodology as well as sustainable gaseous stimulus will be useful for the construction of future smart membranes.