People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Deparis, Olivier
University of Namur
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Unsupervised topological analysis of polarized light microscopy
- 2023Enhanced quantitative birefringence imaging supported by unsupervised topological analysis of polarized light microscopy
- 2023Secondary ion mass spectrometry, a powerful tool for revealing ink formulations and animal skins in medieval manuscriptscitations
- 2020UV scattering by pores in avian eggshellscitations
- 2020Scattering of ultraviolet light by avian eggshellscitations
- 2019Growth dynamics and light scattering of gold nanoparticles in situ synthesized at high concentration in thin polymer filmscitations
- 2019Gold nanoparticles growing in a polymer matrix : what can we learn from imaging ellipsometry ?
- 2018Scattering analysis, imaging ellipsometry and reflectivity of gold nanoparticles growing in a polymer matrix
- 2018Reflectivity, imaging ellipsometry and scattering analysis of gold nanoparticles growing in a polymer matrix
- 2016ZnO quantum dots decorated 3DOM TiO 2 nanocomposites:Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutantscitations
- 2016ZnO quantum dots decorated 3DOM TiO2 nanocompositescitations
- 2015Optimized absorption of solar radiations in nano-structured thin films of crystalline silicon via a genetic algorithmcitations
- 2015Linking optical properties and nanostructure of NiCrOx Cermet nanocomposite for solar thermal application
- 2012Plasmonic device using backscattering of light for enhanced gas and vapour sensingcitations
- 2011Light coupling and enhanced backscattering in layered plasmonic nanocompositescitations
- 2010Leaky-modes excitation in thermally poled nanocomposite glass and their exploitation for saturable absorption
- 2010Poling-assisted fabrication of plasmonic nanocomposite devices in glasscitations
- 2007Photon pair source based on parametric fluorescence in periodically poled twin-hole silica fibercitations
- 2007Photon pair source based on parametric fluorescence in periodically poled twin-hole silica fiber
- 2006Poling-assisted bleaching of soda-lime float glasses containing silver nanoparticles with a decreasing filling factor across the depthcitations
- 2006Refractive index engineering in glass containing spherical silver nanoparticles using dc electric field
- 2005Electric field-assisted formation of percolated silver nanolayers inside glasscitations
- 2005Evolution of poling-assisted bleaching of metal-doped nanocomposite glass with poling conditionscitations
- 2004Poling-assisted bleaching of metal-doped nanocomposite glasscitations
Places of action
Organizations | Location | People |
---|
article
Scattering of ultraviolet light by avian eggshells
Abstract
<p>Eggshells are essential for the reproduction of birds since the optical properties of shells may have an impact on biological functions such as heating and UV protection, recognition by parents or camouflage. Whereas ultraviolet reflection by some bird eggshells has been recently described, its physical origin remains poorly understood. In this study, we identified a porous structure in eggshells. Using Mie scattering modelling, we found it was most likely responsible for reflectance peaks (intensities of ca. 20-50%) observed in the near-UV range. These peaks were observed by spectrophotometric measurements from eggshells of several breeds of hen, one breed of duck and one breed of quail. This optical response was interpreted in terms of the distinct visual perception of hens and humans: eggshells appearing achromatic for humans proved to be chromatic for hens. Fluorescence emission from these eggs was also characterised and attributed to the presence of protoporphyrin IX and biliverdin IXα in the shells. Electron microscopy observations revealed the presence of pores within the so-called calcified shell part (i.e., at depths between ca. 20 μm and ca. 240 μm from the eggshell's outer surface). Mercury intrusion porosimetry allowed us to quantify the pore size distribution. Simulations of the UV response of this porous structure using Mie scattering theory as well as an effective approach accounting for multiple scattering indicate that these pores are responsible for the backscattering peaks observed in the UV range, in the case of beige hen eggshells. Due to the similarities between the pore size distributions observed for beige hen eggshells and other investigated poultry eggshells, we expect Mie backscattering to be the origin of the UV response of the eggshells of many other bird species. This journal is </p>