People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rath, Thomas
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Silicon and Germanium Functionalized Perylene Diimides – Synthesis, Optoelectronic Properties, and their Application as Non-Fullerene Acceptors in Organic Solar Cellscitations
- 2023Solution-Processable Cu3BiS3 Thin Films: Growth Process Insights and Increased Charge Generation Properties by Interface Modificationcitations
- 2023The challenge with high permittivity acceptors in organic solar cells: a case study with Y-series derivativescitations
- 2023Bio-Polyester/Rubber Compounds: Fabrication, Characterization, and Biodegradationcitations
- 2023Low-cost and automated phenotyping system “Phenomenon” for multi-sensor in situ monitoring in plant in vitro culturecitations
- 2022Glycol bearing perylene monoimide based non-fullerene acceptors with increased dielectric permittivitycitations
- 2020Cellulose metal sulfide based nanocomposite thin films
- 2020Synthesis and characterization of zinc di(O-2,2-dimethylpentan-3-yl dithiocarbonates) bearing pyridine or tetramethylethylenediamine coligands and investigation of their thermal conversion mechanisms towards nanocrystalline zinc sulfidecitations
- 2019Multi-layered nanoscale cellulose/CuInS2 sandwich type thin filmscitations
- 2019Modification of NiOx hole transport layers with 4-bromobenzylphosphonic acid and its influence on the performance of lead halide perovskite solar cellscitations
- 2017Progress on lead-free metal halide perovskites for photovoltaic applications: a reviewcitations
- 2016Solution-Processed Bismuth(III)-Based Halide Perovskites as Absorber Materials for Photovoltaic Applications
- 2016Influence of Polymer Phase, Polymer/Nanoparticle Ratio and Organic Additives on the Performance of Hybrid Solar Cells
- 2013Bismuth sulphide–polymer nanocomposites from a highly soluble bismuth xanthate precursorcitations
- 2012Comprehensive Investigation of Silver Nanoparticle/Aluminum Electrodes for Copper Indium Sulfide/Polymer Hybrid Solar Cellscitations
Places of action
Organizations | Location | People |
---|
article
Synthesis and characterization of zinc di(O-2,2-dimethylpentan-3-yl dithiocarbonates) bearing pyridine or tetramethylethylenediamine coligands and investigation of their thermal conversion mechanisms towards nanocrystalline zinc sulfide
Abstract
<p>Metal xanthates are versatile single source precursors for the preparation of various metal sulfides. In this study, we present the synthesis of the two novel zinc xanthate complexes bis(O-2,2-dimethylpentan-3-yl-dithiocarbonato)(N,N,N′,N′-tetramethylethylenediamine)zinc(ii) and bis(O-2,2-dimethylpentan-3-yl-dithiocarbonato)(pyridine)zinc(ii). A thorough investigation of these compounds revealed distinct differences in their structural and thermal properties. While in the complex containing the chelating tetramethylethylenediamine, the xanthate groups coordinate in a monodentate way, they are bidentally coordinated to the zinc atom in the pyridine containing complex. Both compounds show a two-step thermal decomposition with an onset temperature of 151 °C and 156 °C for the tetramethylethylenediamine and pyridine containing complex, respectively. Moreover, different mechanisms are revealed for the two phases of the decomposition based on high resolution mass spectrometry investigations. By the thermal conversion process nanocrystalline zinc sulfide is produced and the coligand significantly influences its primary crystallite size, which is 4.4 nm using the tetramethylethylenediamine and 11.4 nm using the pyridine containing complex for samples prepared at a temperature of 400 °C. This journal is</p>