People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Peltola, Emilia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Interface matters - Effects of catalyst layer metallurgy on macroscale morphology and electrochemical performance of carbon nanofiber electrodescitations
- 2022Nanoscale geometry determines mechanical biocompatibility of vertically aligned nanofiberscitations
- 2021Nanostructured Geometries Strongly Affect Fouling of Carbon Electrodescitations
- 2020Biofouling affects the redox kinetics of outer and inner sphere probes on carbon surfaces drastically differently - implications to biosensingcitations
- 2019Integrating Carbon Nanomaterials with Metals for Bio-sensing Applicationscitations
- 2019Fabrication of micro- and nanopillars from pyrolytic carbon and tetrahedral amorphous carboncitations
- 2018Unmodified and multi-walled carbon nanotube modified tetrahedral amorphous carbon (ta-C) films as in vivo sensor materials for sensitive and selective detection of dopaminecitations
- 2018Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viabilitycitations
- 2017Amorphous carbon thin film electrodes with intrinsic Pt-gradient for hydrogen peroxide detectioncitations
- 2017Amorphous carbon thin film electrodes with intrinsic Pt-gradient for hydrogen peroxide detectioncitations
- 2017Carbon Nanostructure Based Platform for Enzymatic Glutamate Biosensorscitations
- 2017Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viabilitycitations
- 2015Electrochemical detection of hydrogen peroxide on platinum-containing tetrahedral amorphous carbon sensors and evaluation of their biofouling propertiescitations
Places of action
Organizations | Location | People |
---|
article
Biofouling affects the redox kinetics of outer and inner sphere probes on carbon surfaces drastically differently - implications to biosensing
Abstract
<p>Biofouling imposes a significant threat for sensing probes used in vivo. Antifouling strategies commonly utilize a protective layer on top of the electrode but this may compromise performance of the electrode. Here, we investigated the effect of surface topography and chemistry on fouling without additional protective layers. We have utilized two different carbon materials; tetrahedral amorphous carbon (ta-C) and SU-8 based pyrolytic carbon (PyC) in their typical smooth thin film structure as well as with a nanopillar topography templated from black silicon. The near edge X-ray absorption fine structure (NEXAFS) spectrum revealed striking differences in chemical functionalities of the surfaces. PyC contained equal amounts of ketone, hydroxyl and ether/epoxide groups, while ta-C contained significant amounts of carbonyl groups. Overall, oxygen functionalities were significantly increased on nanograss surfaces compared to the flat counterparts. Neither bovine serum albumin (BSA) or fetal bovine serum (FBS) fouling caused major effects on electron transfer kinetics of outer sphere redox (OSR) probe Ru(NH3)63+ on any of the materials. In contrast, negatively charged OSR probe IrCl62- kinetics were clearly affected by fouling, possibly due to the electrostatic repulsion between redox species and the anionically-charged proteins adsorbed on the electrode and/or stronger interaction of the proteins and positively charged surface. The OSR probe kinetics were less affected by fouling on PyC, probably due to conformational changes of proteins on the surface. Dopamine (DA) was tested as an inner sphere redox (ISR) probe and as expected, the kinetics were heavily dependent on the material; PyC had very fast electron transfer kinetics, while ta-C had sluggish kinetics. DA electron transfer kinetics were heavily affected on all surfaces by fouling (ΔEp increase 30-451%). The effect was stronger on PyC, possibly due to the more strongly adhered protein layer limiting the access of the probe to the inner sphere.</p>