People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Misra, Shantanu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Unravelling the need for balancing band convergence and resonant level in Sn 1- x - y In x Mn y Te for high thermoelectric performancecitations
- 2021Synthesis, crystal structure and transport properties of the cluster compounds Tl 2 Mo 15 S 19 and Ag 3 Tl 2 Mo 15 S 19citations
- 2021Synthesis and physical properties of single-crystalline InTe: towards high thermoelectric performancecitations
- 2021Residual resistivity as an independent indicator of resonant levels in semiconductorscitations
- 2021Enhanced thermoelectric performance of InTe through Pb dopingcitations
- 2021Enhanced thermoelectric performance of InTe through Pb dopingcitations
- 2020Band structure engineering in Sn 1.03 Te through an In-induced resonant levelcitations
- 2020Optimum in the thermoelectric efficiency of nanostructured Nb-doped TiO 2 ceramics: from polarons to Nb–Nb dimerscitations
- 2020Optimum in the thermoelectric efficiency of nanostructured Nb-doped TiO 2 ceramics: from polarons to Nb–Nb dimerscitations
- 2020Towards highly-efficient telluride-based thermoelectric materials ; Vers des matériaux thermoélectriques à haute efficacité à base de tellure
- 2019Band structure engineering in Sn 1.03 Te through an In-induced resonant levelcitations
- 2019Scalable free-standing polypyrrole films for wrist-band type flexible thermoelectric power generatorcitations
Places of action
Organizations | Location | People |
---|
article
Optimum in the thermoelectric efficiency of nanostructured Nb-doped TiO 2 ceramics: from polarons to Nb–Nb dimers
Abstract
Rutile is the most common and stable polymorph form of titanium oxide TiO<sub>2</sub> at all temperatures. The doping of rutile TiO<sub>2</sub> with a small amount of niobium is reknown for being responsible for a large increase of the electrical conductivity by several orders of magnitude, broadening its technological interest towards new emerging fields such as the thermoelectric conversion of waste heat. The electronic conduction has been found to be of a polaronic nature with strongly localized charges around the Ti<sup>3+</sup> centers while, on the other side, the relatively high value of the thermal conductivity implies the existence of lattice heat carriers, i.e. phonons, with large mean free paths which makes the nanostructuration relevant for optimizing the thermoelectric efficiency. Here, the use of a high-pressure and high-temperature sintering technique has allowed to vary the grain size in rutile TiO<sub>2</sub> pellets from 300 to 170 nm, leading to a significant reduction of the lattice thermal conductivity. The thermoelectric properties (electrical conductivity, Seebeck coefficient and thermal conductivity) of Nb-doped rutile nanostructured ceramics, namely Nb<sub>x</sub>Ti<sub>1−x</sub>O<sub>2</sub> with x varying from 1 to 5%, are reported from room temperature to ∼900 K. With the incorporation of Nb, an optimum in the thermoelectric properties together with an anomaly on the tetragonal lattice constant c are observed for a concentration of ∼2.85%, which might be the fingerprint of the formation of short Nb dimers.