Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cottrino, Sandrine

  • Google
  • 9
  • 34
  • 66

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Insights on the effect of process conditions on the optical properties of silver ion exchanged soda-lime silicate glasscitations
  • 2023In situ X-ray diffraction study of a TiO2 nanopowder Spark Plasma Sintering under very high pressure8citations
  • 2023In situ X-ray diffraction study of a TiO2 nanopowder Spark Plasma Sintering under very high pressure8citations
  • 2020Optimum in the thermoelectric efficiency of nanostructured Nb-doped TiO 2 ceramics: from polarons to Nb–Nb dimers16citations
  • 2020Optimum in the thermoelectric efficiency of nanostructured Nb-doped TiO 2 ceramics: from polarons to Nb–Nb dimers16citations
  • 2020Effect of High Pressure Spark Plasma Sintering on the Densification of a Nb-Doped TiO2 Nanopowder9citations
  • 2020Effect of High Pressure Spark Plasma Sintering on the Densification of a Nb-Doped TiO2 Nanopowder9citations
  • 2019Sol-gel preparation of doped-metal oxide nanostructures for the thermoelectric conversion of energycitations
  • 2013Characterization by X-ray tomography of granulated alumina powder during in situ die compactioncitations

Places of action

Chart of shared publication
Hamidouche, Mohamed
1 / 1 shared
Manseri, Amar
1 / 8 shared
Soltani, Mohamed Toufik
1 / 3 shared
Demagh, Nacer-Eddine
1 / 2 shared
Osmani, Ismahen
1 / 1 shared
Guechi, Abla
1 / 1 shared
Godec, Yann Le
1 / 8 shared
Pailhes, Stéphane
6 / 7 shared
Floch, Sylvie Le
3 / 5 shared
Mishra, S.
3 / 34 shared
Gaudisson, Thomas
4 / 11 shared
Mézouar, Mohamed
2 / 2 shared
Ferrara, Emanuela Archina
2 / 2 shared
Largeteau, Alain
2 / 31 shared
Daniele, S.
3 / 24 shared
Le Floch, Sylvie
3 / 13 shared
Le Godec, Yann
1 / 10 shared
Mishra, Shashank
4 / 10 shared
Daniele, Stephane
2 / 4 shared
Lenoir, Bertrand
2 / 103 shared
Fantozzi, Gilbert
4 / 80 shared
Debord, Régis
2 / 7 shared
Candolfi, Christophe
2 / 86 shared
Verchère, Alexandre
4 / 4 shared
Misra, Shantanu
2 / 12 shared
Daniele, Stéphane
2 / 8 shared
Blanchard, Nicholas
2 / 20 shared
Pailhès, S.
1 / 12 shared
Floch, S. Le
1 / 5 shared
Verchere, A.
1 / 8 shared
Fantozzi, G.
1 / 12 shared
Jorand, Yves
1 / 5 shared
Adrien, Jérôme
1 / 38 shared
Maire, Eric
1 / 58 shared
Chart of publication period
2024
2023
2020
2019
2013

Co-Authors (by relevance)

  • Hamidouche, Mohamed
  • Manseri, Amar
  • Soltani, Mohamed Toufik
  • Demagh, Nacer-Eddine
  • Osmani, Ismahen
  • Guechi, Abla
  • Godec, Yann Le
  • Pailhes, Stéphane
  • Floch, Sylvie Le
  • Mishra, S.
  • Gaudisson, Thomas
  • Mézouar, Mohamed
  • Ferrara, Emanuela Archina
  • Largeteau, Alain
  • Daniele, S.
  • Le Floch, Sylvie
  • Le Godec, Yann
  • Mishra, Shashank
  • Daniele, Stephane
  • Lenoir, Bertrand
  • Fantozzi, Gilbert
  • Debord, Régis
  • Candolfi, Christophe
  • Verchère, Alexandre
  • Misra, Shantanu
  • Daniele, Stéphane
  • Blanchard, Nicholas
  • Pailhès, S.
  • Floch, S. Le
  • Verchere, A.
  • Fantozzi, G.
  • Jorand, Yves
  • Adrien, Jérôme
  • Maire, Eric
OrganizationsLocationPeople

article

Optimum in the thermoelectric efficiency of nanostructured Nb-doped TiO 2 ceramics: from polarons to Nb–Nb dimers

  • Cottrino, Sandrine
  • Mishra, Shashank
  • Daniele, Stephane
  • Lenoir, Bertrand
  • Fantozzi, Gilbert
  • Pailhes, Stéphane
  • Floch, Sylvie Le
  • Debord, Régis
  • Candolfi, Christophe
  • Verchère, Alexandre
  • Misra, Shantanu
Abstract

Rutile is the most common and stable polymorph form of titanium oxide TiO<sub>2</sub> at all temperatures. The doping of rutile TiO<sub>2</sub> with a small amount of niobium is reknown for being responsible for a large increase of the electrical conductivity by several orders of magnitude, broadening its technological interest towards new emerging fields such as the thermoelectric conversion of waste heat. The electronic conduction has been found to be of a polaronic nature with strongly localized charges around the Ti<sup>3+</sup> centers while, on the other side, the relatively high value of the thermal conductivity implies the existence of lattice heat carriers, i.e. phonons, with large mean free paths which makes the nanostructuration relevant for optimizing the thermoelectric efficiency. Here, the use of a high-pressure and high-temperature sintering technique has allowed to vary the grain size in rutile TiO<sub>2</sub> pellets from 300 to 170 nm, leading to a significant reduction of the lattice thermal conductivity. The thermoelectric properties (electrical conductivity, Seebeck coefficient and thermal conductivity) of Nb-doped rutile nanostructured ceramics, namely Nb<sub>x</sub>Ti<sub>1−x</sub>O<sub>2</sub> with x varying from 1 to 5%, are reported from room temperature to ∼900 K. With the incorporation of Nb, an optimum in the thermoelectric properties together with an anomaly on the tetragonal lattice constant c are observed for a concentration of ∼2.85%, which might be the fingerprint of the formation of short Nb dimers.

Topics
  • impedance spectroscopy
  • grain
  • grain size
  • titanium
  • ceramic
  • thermal conductivity
  • electrical conductivity
  • sintering
  • niobium