People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Misra, Shantanu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Unravelling the need for balancing band convergence and resonant level in Sn 1- x - y In x Mn y Te for high thermoelectric performancecitations
- 2021Synthesis, crystal structure and transport properties of the cluster compounds Tl 2 Mo 15 S 19 and Ag 3 Tl 2 Mo 15 S 19citations
- 2021Synthesis and physical properties of single-crystalline InTe: towards high thermoelectric performancecitations
- 2021Residual resistivity as an independent indicator of resonant levels in semiconductorscitations
- 2021Enhanced thermoelectric performance of InTe through Pb dopingcitations
- 2021Enhanced thermoelectric performance of InTe through Pb dopingcitations
- 2020Band structure engineering in Sn 1.03 Te through an In-induced resonant levelcitations
- 2020Optimum in the thermoelectric efficiency of nanostructured Nb-doped TiO 2 ceramics: from polarons to Nb–Nb dimerscitations
- 2020Optimum in the thermoelectric efficiency of nanostructured Nb-doped TiO 2 ceramics: from polarons to Nb–Nb dimerscitations
- 2020Towards highly-efficient telluride-based thermoelectric materials ; Vers des matériaux thermoélectriques à haute efficacité à base de tellure
- 2019Band structure engineering in Sn 1.03 Te through an In-induced resonant levelcitations
- 2019Scalable free-standing polypyrrole films for wrist-band type flexible thermoelectric power generatorcitations
Places of action
Organizations | Location | People |
---|
article
Band structure engineering in Sn 1.03 Te through an In-induced resonant level
Abstract
Narrow-band-gap IV-VI semiconductors represent a historically important class of thermoelectric materials. As one of the representative compound of this class, SnTe has been reinvestigated over the last years demonstrating its potential as a high-temperature p-type thermoelectric material. Here, we present a detailed study of the influence of very low doping levels of In, from 0.05% up to 2%, on the high-temperature transport properties of the selfcompensated Sn1.03Te compound. Our results evidence a strong impact of In on the transport properties, consistent with the presence of an In-induced resonant level (RL) in the valence bands of Sn1.03Te. This peculiar behavior is confirmed by electronic band structure calculations performed using the Korringa-Kohn-Rostoker method with the coherent potential approximation (KKR-CPA) revealing a narrow and sharp peak in the density of states (DOS) induced by the hybridization of the In s-states with the electronic states of Sn1.03Te. This distortion in the DOS results in a spectacular increase in both the thermopower and electrical resistivityat300K. AlthoughtheinfluenceoftheRLis somewhat lessenedathigher temperatures, a significant enhancement in theZTvalues is nevertheless achieved with a peak ZTof 0.75 at 800 K which represents an increase of 35% over the values measured in Sn1.03Te. Of relevance for practical applications, the weak dependence of the RL on temperature leads to enhanced averageZTvalue.