People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Han, Jialuo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2022Soft Liquid Metal Infused Conductive Spongescitations
- 2022Induction heating for the removal of liquid metal-based implant mimics: a proof-of-conceptcitations
- 2020Pulsing liquid alloys for nanomaterials synthesiscitations
- 2020Pulsing liquid alloys for nanomaterials synthesiscitations
- 2020Nucleation and growth of polyaniline nanofibers onto liquid metal nanoparticlescitations
- 2020Nucleation and growth of polyaniline nanofibers onto liquid metal nanoparticlescitations
- 2019Liquid metals for tuning gas sensitive layerscitations
Places of action
Organizations | Location | People |
---|
article
Liquid metals for tuning gas sensitive layers
Abstract
Liquid metals can offer extraordinary capabilities to the field of sensors, yet their potentials have not been fully realised. In this work, we present a heterostructure mix of eutectic alloy of gallium and two dimensional (2D) flakes of tungsten oxides (WO3) for gas sensing. We show that eutectic alloy of EGaIn, made of gallium and indium, can be co-sonicated with acid bath synthesised 2D WO3 for chemisorption sensing of H2 gas molecules. We demonstrate that this co-sonication result in extra trap bands within the bandgap of WO3 to enhance the gas sensing properties. Another interesting observation was the effect on reducing the size of the sonicated EGaIn droplets in the presence of 2D WO3 flakes, that is likely due to the increase of shear force during the sonication. Mixes using different ratios of WO3 and EGaIn were synthesised. The optimum gas sensing operation in terms of response factor was seen for 70% WO3- 30% EGaIn mix. The work provides a viable pathway towards a new platform that liquid metals can be used for sensing applications and the advantages that they can offer to augment the capabilities of sensors.