People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bos, Jan-Willem Gezienes
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Alloying and doping control in the layered metal phosphide thermoelectric CaCuPcitations
- 2023Thermoelectric properties and Kondo transition in the pseudo-gap metals TiNiSi and TiNiGe
- 2023Alloying and doping control in the layered metal phosphide thermoelectric CaCuPcitations
- 2023Thermoelectric properties of the aliovalent half-Heusler alloy Zn0.5Ti0.5NiSb with intrinsic low thermal conductivitycitations
- 2019Suppression of thermal conductivity without impeding electron mobility in n-type XNiSn half-Heusler thermoelectricscitations
- 2019Phase stability and thermoelectric properties of TiCoSb-TiM2Sn (M = Ni, Fe) Heusler compositescitations
- 2018Grain-by-grain compositional variations and interstitial metals - a new route towards achieving high performance in Half-Heusler thermoelectricscitations
- 2018Substitution versus full-Heusler segregation in TiCoSbcitations
- 2016Thermoelectric properties and high-temperature stability of the Ti1-xVxCoSb1-xSnx half-Heusler alloyscitations
- 2015Efficient thermoelectric performance in silicon nano-films by vacancy-engineeringcitations
Places of action
Organizations | Location | People |
---|
article
Suppression of thermal conductivity without impeding electron mobility in n-type XNiSn half-Heusler thermoelectrics
Abstract
We outline a strategy to improve the thermoelectric performance of n-type XNiSn based half-Heusler alloys through Cu doping into vacant tetrahedral sites. A comprehensive combination of structural characterisation and modelling is employed to discriminate the competing mechanisms for thermoelectric enhancement. During synthesis a mineralising effect occurs that improves the homogeneity of the alloying elements Ti, Zr and Hf, and promotes grain growth, leading to a doubling of the electron mobility. In the formed materials, Cu is a strong n-type dopant, like Sb, but occupies the interstitial site and strongly enhances phonon scattering without diminishing carrier mobility (in contrast to interstitial Ni). Simultaneous alloying with Ti, Zr and Hf serves to minimise the thermal conductivity via regular mass disorder and strain effects. A best electronic power factor, S2/ρ, of 3.6 mW m−1 K−2 and maximum ZT of 0.8 at 773 K were observed for a Ti0.5Zr0.25Hf0.25NiCu0.025Sn composition, enabling promising device power densities of ∼6 W cm−2 and ∼8% conversion efficiency from a 450 K gradient. These findings are important because they provide new insight into the mechanisms underpinning high ZT in the XNiSn system and indicate a direction for further improvements in thermoelectric performance.