People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sajjad, Muhammad Tariq
London South Bank University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Improvements in dielectric, electrical and magnetic contributions in Ca0.5Co0.5CrxFe2-xO4 spinel ferrites by the substitution of Cr3+ ions
- 2021Development of Quantum Dot (QD) Based Color Converters for Multicolor Display.
- 2021Development of Quantum Dots (QD) based color converters for multicolor displaycitations
- 2020Direct Growth of Vertically Aligned Carbon Nanotubes onto Transparent Conductive Oxide Glass for Enhanced Charge Extraction in Perovskite Solar Cellscitations
- 2019Triptycene as a supramolecular additive in PTB7:PCBM blends and its influence on photovoltaic propertiescitations
- 2019CuSCN nanowires as electrodes for p-type quantum dot sensitized solar cells : charge transfer dynamics and alumina passivationcitations
- 2019Efficient indoor pin hybrid perovskite solar cells using low temperature solution processed NiO as hole extraction layerscitations
- 2019Interface limited hole extraction from methylammonium lead iodide filmscitations
- 2019Interface limited hole extraction from methylammonium lead iodide filmscitations
- 2019Highly efficient fullerene and non-fullerene based ternary organic solar cells incorporating a new tetrathiocin-cored semiconductorcitations
- 2018Triptycene as a supramolecular additive in PTB7:PCBM blends and its influence on photovoltaic propertiescitations
- 2018Triptycene as a Supramolecular Additive in PTB7: PCBM blends and its Influence on Photovoltaic Propertiescitations
- 2018Improved efficiency of PbS quantum dot sensitized NiO photocathodes with naphthalene diimide electron acceptor bound to the surface of the nanocrystalscitations
- 2018CuSCN nanowires as electrodes for p-type quantum dot sensitized solar cells:charge transfer dynamics and alumina passivationcitations
- 2017Narrow-band anisotropic electronic structure of ReS2citations
- 2017Tuning crystalline ordering by annealing and additives to study its effect on exciton diffusion in a polyalkylthiophene copolymercitations
- 2015Controlling exciton diffusion and fullerene distribution in photovoltaic blends by side chain modificationcitations
- 2015In situ formation and photo patterning of emissive quantum dots in organic small moleculescitations
Places of action
Organizations | Location | People |
---|
article
Highly efficient fullerene and non-fullerene based ternary organic solar cells incorporating a new tetrathiocin-cored semiconductor
Abstract
Authors thank the EPSRC for funding under grants EP/L012200/1 and EP/L012294/1. ; A new dual-chain oligothiophene-based organic semiconductor, EH-5T-TTC, is presented. The molecule contains two conjugated chains linked by a fused tetrathiocin core. X-ray crystallography reveals a boat conformation within the 8-membered sulfur heterocycle core and extensive π–π and intermolecular sulfur–sulfur interactions in the bulk, leading to a 2-dimensional structure. This unusual molecule has been studied as a ternary component in organic solar cell blends containing the electron donor PTB7-Th and both fullerene (PC71BM) and non-fullerene acceptors ITIC and EH-IDTBR. By incorporating EH-5T-TTC as a ternary component, the power conversion efficiency of the binary blends containing non-fullerene acceptor increases by 17% (from 7.8% to 9.2%) and by 85% for the binary blend with fullerene acceptor (from 3.3% to 6.3%). Detailed characterisation of the ternary blend systems implies that the ternary small molecule EH-5T-TTC functions differently in polymer:fullerene and polymer:non-fullerene blends and has dual functions of morphology modification and complementary spectral absorption. ; Peer reviewed