People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Crump, Matthew P.
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2020Mixing and Matching Genes of Marine and Terrestrial Origin in the Biosynthesis of the Mupirocin Antibioticscitations
- 2018Practical Considerations in High-Precision Compound-Specific Radiocarbon Analysescitations
- 2018Practical Considerations in High-Precision Compound-Specific Radiocarbon Analyses:Eliminating the Effects of Solvent and Sample Cross-Contamination on Accuracy and Precisioncitations
- 2017Use of a 700 MHz NMR Microcryoprobe for the Identification and Quantification of Exogenous Carbon in Compounds Purified by Preparative Capillary Gas Chromatography for Radiocarbon Determinationscitations
Places of action
Organizations | Location | People |
---|
article
Mixing and Matching Genes of Marine and Terrestrial Origin in the Biosynthesis of the Mupirocin Antibiotics
Abstract
With growing understanding of the underlying pathways of polyketide biosynthesis, along with the continual expansion of the synthetic biology toolkit, it is becoming possible to rationally engineer and fine-tune the polyketide biosynthetic machinery for production of new compounds with improved properties such as stability and/or bioactivity. However, engneering the pathway to the thiomarinol antibiotics has proved challenging. Here we report that genes from a marine Pseudoalternomonas sp. producing thiomarinol can be expressed in functional form in the biosynthesis of the clinically important antibiotic mupirocin from the soil bacterium Pseudomonas fluorescens. It is revealed that both pathways employ the same unusual mechanism of tetrahydropyran (THP) ring formation and the enzymes are cross compatible.Furthermore, the efficiency of downstream processing of 10,11-epoxy versus 10,11-alkenic metabolites are comparable. Optimisation of the fermentation conditions in an engineered strain in which production of pseudomonic acid A (with the 10,11-epoxide) is replaced by substantial titres of the more stable pseudomonic acid C (with a 10,11-alkene) pave the way for its development as a more stable antibiotic with wider applications than mupirocin.