People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Johnson, Andrew L.
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (40/40 displayed)
- 2024Zinc and cadmium thioamidate complexes:rational design of single-source precursors for the AACVD of ZnScitations
- 2024Plasma-Enhanced Atomic Layer Deposition of Hematite for Photoelectrochemical Water Splitting Applications
- 2023Multi-pulse atomic layer deposition of p-type SnO thin filmscitations
- 2022N-O Ligand Supported Stannylenescitations
- 2021Evaluation of Sn(II) Aminoalkoxide Precursors for Atomic Layer Deposition of SnO Thin Films.citations
- 2021Tin(II) Ureide Complexes:Synthesis, Structural Chemistry and Evaluation as SnO precursorscitations
- 2021Atomic scale surface modification of TiO2 3D nano-arrays : plasma enhanced atomic layer deposition of NiO for photocatalysiscitations
- 2021Tin(II) Ureide Complexescitations
- 2021Atomic layer deposition method of metal (II), (0), or (IV) containing film layer
- 2019Aerosol-Assisted Chemical Vapor Deposition of ZnS from Thioureide Single Source Precursorscitations
- 2019Synthetic, Structural and Computational Studies on Heavier Tetragen and Chalcogen Triazenide Complexescitations
- 2019Evaluation of AA-CVD deposited phase pure polymorphs of SnS for thin films solar cellscitations
- 2018Synthesis, Characterisation and Thermal Properties of Sn(II) Pyrrolide Complexescitations
- 2018Oxidative Addition to Sn(II) Guanidinate Complexes: Precursors to Tin(II) Chalcogenide Nanocrystalscitations
- 2018Recent developments in molecular precursors for atomic layer depositioncitations
- 2018Tin Guanidinato Complexes: Oxidative Control of Sn, SnS, SnSe and SnTe Thin Film Depositioncitations
- 2017Deposition of SnS Thin Films from Sn(II) Thioamidate Precursorscitations
- 2017Aerosol-Assisted chemical vapor deposition of cds from xanthate single source precursorscitations
- 2016Aerosol-assisted CVD of SnO from stannous alkoxide precursorscitations
- 2016Synthesis, Structure and CVD Studies of the Group 13 Complexes [Me 2 M{tfacnac}] [M = Al, Ga, In; Htfacnac = F 3 CC(OH)CHC(CH 3 )NCH 2 CH 2 OCH 3 ]citations
- 2016Cobalt(I) olefin complexes:precursors for metal-organic chemical vapor deposition of high purity cobalt metal thin filmscitations
- 2016Homoleptic zirconium amidatescitations
- 2016Synthesis, Structure and CVD Studies of the Group 13 Complexes [Me2M{tfacnac}] [M = Al, Ga, In; Htfacnac = F3CC(OH)CHC(CH3)NCH2CH2OCH3]citations
- 2015Tailoring precursors for depositioncitations
- 2015Synthesis and characterization of fluorinated β-ketoiminate zinc precursors and their utility in the AP-MOCVD growth of ZnO:Fcitations
- 2015Synthesis and characterization of fluorinated β-ketoiminate zinc precursors and their utility in the AP-MOCVD growth of ZnO:Fcitations
- 2015Polymorph-Selective Deposition of High Purity SnS Thin Films from a Single Source Precursorcitations
- 2014Single-source AACVD of composite cobalt-silicon oxide thin filmscitations
- 2014The first crystallographically-characterised Cu(II) xanthatecitations
- 2013Synthesis of heterobimetallic tungsten acetylacetonate/alkoxide complexes and their application as molecular precursors to metal tungstatescitations
- 2013Development of metal chalcogenide precursors for use in chemical vapour deposition (CVD) and colloidal nano particle synthesis
- 2013CVD of pure copper films from novel iso-ureate complexescitations
- 2013Inorganic and organozinc fluorocarboxylatescitations
- 2012Photoactivated linkage isomerism in single crystals of nickel, palladium and platinum di-nitro complexes: A photocrystallographic investigationcitations
- 2011Synthesis of complexes with the polydentate ligand N,N '-bis(2-hydroxyphenyl)-pyridine-2,6-dicarboxamidecitations
- 2011Synthesis, characterization, and materials chemistry of group 4 silylimidescitations
- 2009Structural Tungsten-Imido Chemistry: The Gas-Phase Structure of W(NBut)(2)(NHBut)(2) and the Solid-State Structures of Novel Heterobimetallic W/N/M (M = Rh, Pd, Zn) Speciescitations
- 2009Synthesis and structure of aluminium amine-phenolate complexescitations
- 2001Tungsten(VI) metallacarborane imido complexes; hydrogen bonding to a bent imido ligand in {W(Nt(Bu)2[N(H)C(Me)NHtBu](C2 B9H11}
- 2000First structural characterisation of a 2,1,12-MC2B9 metallacarborane, [2,2,2-(NMe2)3-closo-2,1,12-TaC2B 9H11]. Trends in boron NMR shifts on replacing a {BH} vertex with a metal {MLn} vertex in icosahedral carboranescitations
Places of action
Organizations | Location | People |
---|
article
Evaluation of AA-CVD deposited phase pure polymorphs of SnS for thin films solar cells
Abstract
<p>Six different thin film solar cells consisting of either orthorhombic (α-SnS) or cubic (π-SnS) tin(ii) sulfide absorber layers have been fabricated, characterized and evaluated. Absorber layers of either π-SnS or α-SnS were selectively deposited by temperature controlled Aerosol Assisted Chemical Vapor Deposition (AA-CVD) from a single source precursor. α-SnS and π-SnS layers were grown on molybdenum (Mo), Fluorine-doped Tin Oxide (FTO), and FTO coated with a thin amorphous-TiO<sub>x</sub>layer (am-TiO<sub>x</sub>-FTO), which were shown to have significant impact on the growth rate and morphology of the as deposited thin films. Phase pure α-SnS and π-SnS thin films were characterized by X-ray diffraction analysis (XRD) and Raman spectroscopy (514.5 nm). Furthermore, a series of PV devices with an active area of 0.1 cm<sup>2</sup>were subsequently fabricated using a CdS buffer layer, intrinsic ZnO (i-ZnO) as an insulator and Indium Tin Oxide (ITO) as a top contact. The highest solar conversion efficiency for the devices consisting of the α-SnS polymorph was achieved with Mo (η = 0.82%) or FTO (η = 0.88%) as the back contacts, with respective open-circuit voltages (V<sub>oc</sub>) of 0.135 and 0.144 V, and short-circuit current densities (J<sub>sc</sub>) of 12.96 and 12.78 mA cm<sup>-2</sup>. For the devices containing the π-SnS polymorph, the highest efficiencies were obtained with the am-TiO<sub>x</sub>-FTO (η = 0.41%) back contact, with a V<sub>oc</sub>of 0.135 V, and J<sub>sc</sub>of 5.40 mA cm<sup>-2</sup>. We show that mild post-fabrication hot plate annealing can improve the J<sub>sc</sub>, but can in most cases compromise the V<sub>oc</sub>. The effect of sequential annealing was monitored by solar conversion efficiency and external quantum efficiency (EQE) measurements.</p>