People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gagliardi, Laura
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2021Tuning the Conductivity of Hexa-Zirconium(IV) Metal-Organic Frameworks by Encapsulating Heterofullerenescitations
- 2020Insights into the structure−activity relationships in metal−Organic framework-supported nickel catalysts for ethylene hydrogenationcitations
- 2020Isomerization and Selective Hydrogenation of Propynecitations
- 2019Lead-Free Double Perovskites Cs 2 InCuCl 6 and (CH 3 NH 3 ) 2 InCuCl 6 : Electronic, Optical, and Electrical Propertiescitations
- 2018Beyond the Active Sitecitations
- 2018Computational Study of Structural and Electronic Properties of Lead-Free CsMI3 Perovskites (M = Ge, Sn, Pb, Mg, Ca, Sr, and Ba)citations
- 2018Catalytic descriptors and electronic properties of single-site catalysts for ethene dimerization to 1-butenecitations
- 2017Bridging Zirconia Nodes within a Metal-Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowirescitations
- 2017Metal-Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperaturecitations
- 2017Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal-Organic Frameworkcitations
- 2017Atomic Layer Deposition in a Metal-Organic Frameworkcitations
- 2016Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal-Organic Frameworkcitations
- 2016Computationally Guided Discovery of a Catalytic Cobalt-Decorated Metal-Organic Framework for Ethylene Dimerizationcitations
- 2015Targeted Single-Site MOF Node Modificationcitations
- 2012Volatilities of actinide and lanthanide N, N -dimethylaminodiboranate chemical vapor deposition precursorscitations
- 2006The characterization of molecular alkaly metal azidescitations
Places of action
Organizations | Location | People |
---|
article
Lead-Free Double Perovskites Cs 2 InCuCl 6 and (CH 3 NH 3 ) 2 InCuCl 6 : Electronic, Optical, and Electrical Properties
Abstract
<p>Searching for alternatives to lead-containing metal halide perovskites, we explored the properties of indium-based inorganic double perovskites Cs2InMX6 with M = Cu, Ag, Au and X = Cl, Br, I, and of its organic-inorganic hybrid derivative MA2InCuCl6 (MA = CH3NH3+) using computation within Kohn-Sham density functional theory. Among these compounds, Cs2InCuCl6 and MA2InCuCl6 were found to be potentially promising candidates for solar cells. Calculations with different functionals provided the direct band gap of Cs2InCuCl6 between 1.05 and 1.73 eV. In contrast, MA2InCuCl6 exhibits an indirect band gap between 1.31 and 2.09 eV depending on the choice of exchange-correlation functional. Cs2InCuCl6 exhibits a much higher absorption coefficient than that calculated for c-Si and CdTe, common semiconductors for solar cells. Even MA2InCuCl6 is predicted to have a higher absorption coefficient than c-Si and CdTe across the visible spectrum despite the fact that it is an indirect band gap material. The intrinsic charge carrier mobilities for Cs2InCuCl6 along the L-Γ path are predicted to be comparable to those for MAPbI3. Finally, we carried out calculations of the band edge positions for MA2InCuCl6 and Cs2InCuCl6 to offer guidance for solar cell heterojunction design and optimization. We conclude that Cs2InCuCl6 and MA2InCuCl6 are promising semiconductors for photovoltaic and optoelectronic applications.</p>