Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Aydil, Eray

  • Google
  • 1
  • 2
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Lead-Free Double Perovskites Cs 2 InCuCl 6 and (CH 3 NH 3 ) 2 InCuCl 6 : Electronic, Optical, and Electrical Properties47citations

Places of action

Chart of shared publication
Pham, Hung Quang
1 / 1 shared
Gagliardi, Laura
1 / 16 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Pham, Hung Quang
  • Gagliardi, Laura
OrganizationsLocationPeople

article

Lead-Free Double Perovskites Cs 2 InCuCl 6 and (CH 3 NH 3 ) 2 InCuCl 6 : Electronic, Optical, and Electrical Properties

  • Aydil, Eray
  • Pham, Hung Quang
  • Gagliardi, Laura
Abstract

<p>Searching for alternatives to lead-containing metal halide perovskites, we explored the properties of indium-based inorganic double perovskites Cs2InMX6 with M = Cu, Ag, Au and X = Cl, Br, I, and of its organic-inorganic hybrid derivative MA2InCuCl6 (MA = CH3NH3+) using computation within Kohn-Sham density functional theory. Among these compounds, Cs2InCuCl6 and MA2InCuCl6 were found to be potentially promising candidates for solar cells. Calculations with different functionals provided the direct band gap of Cs2InCuCl6 between 1.05 and 1.73 eV. In contrast, MA2InCuCl6 exhibits an indirect band gap between 1.31 and 2.09 eV depending on the choice of exchange-correlation functional. Cs2InCuCl6 exhibits a much higher absorption coefficient than that calculated for c-Si and CdTe, common semiconductors for solar cells. Even MA2InCuCl6 is predicted to have a higher absorption coefficient than c-Si and CdTe across the visible spectrum despite the fact that it is an indirect band gap material. The intrinsic charge carrier mobilities for Cs2InCuCl6 along the L-Γ path are predicted to be comparable to those for MAPbI3. Finally, we carried out calculations of the band edge positions for MA2InCuCl6 and Cs2InCuCl6 to offer guidance for solar cell heterojunction design and optimization. We conclude that Cs2InCuCl6 and MA2InCuCl6 are promising semiconductors for photovoltaic and optoelectronic applications.</p>

Topics
  • density
  • perovskite
  • impedance spectroscopy
  • compound
  • theory
  • semiconductor
  • density functional theory
  • Indium