Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sadeghi, Hatef

  • Google
  • 17
  • 46
  • 380

University of Warwick

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (17/17 displayed)

  • 2023Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping mode7citations
  • 2022Low Thermal Conductivity in Franckeite Heterostructures11citations
  • 2022Thermoelectric properties of organic thin films enhanced by π-π stacking10citations
  • 2020Radical enhancement of molecular thermoelectric efficiency36citations
  • 2019Discriminating Seebeck Sensing of Molecules7citations
  • 2019Quantum and Phonon Interference Enhanced Molecular-Scale Thermoelectricity29citations
  • 2019Unusual length dependence of the conductance in cumulene molecular wires52citations
  • 2019Magic Number Theory of Superconducting Proximity Effects and Wigner Delay Times in Graphene-Like Molecules1citations
  • 2018Stable-radicals increase the conductance and Seebeck coefficient of graphene nanoconstrictions14citations
  • 2018Toward High Thermoelectric Performance of Thiophene and Ethylenedioxythiophene (EDOT) Molecular Wires46citations
  • 2018Connectivity-driven bi-thermoelectricity in heteroatom-substituted molecular junctions33citations
  • 2017Tuning the Seebeck coefficient of naphthalenediimide by electrochemical gating and doping17citations
  • 2017High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wires43citations
  • 2017Thermoelectricity in vertical graphene-C60-graphene architectures21citations
  • 2016Theory of electron and phonon transport in nano and molecular quantum devicescitations
  • 2016Cross-plane enhanced thermoelectricity and phonon suppression in graphene/MoS2 van der Waals heterostructures49citations
  • 2013Classic and quantum capacitances in bernal bilayer and trilayer graphene field effect transistor4citations

Places of action

Chart of shared publication
Lambert, Colin John
11 / 31 shared
Kolosov, Oleg Victor
3 / 29 shared
Wang, Xinati
1 / 1 shared
Jay, Michael
1 / 1 shared
Lamantia, Angelo
2 / 3 shared
Robinson, Bj
2 / 13 shared
Spiece, Jean
1 / 7 shared
Evangeli, Charalambos
1 / 4 shared
Sangtarash, Sara
7 / 7 shared
Molina-Mendoza, Aday J.
1 / 3 shared
Ramrakhiyani, Kunal Lulla
1 / 1 shared
Mucientes, Marta
1 / 3 shared
Mueller, Thomas
1 / 5 shared
Forcieri, Leonardo
1 / 1 shared
Jarvis, Samuel Paul
1 / 2 shared
Dekkiche, Hervé
1 / 1 shared
Bryce, Martin R.
1 / 3 shared
Wang, Xintai
1 / 4 shared
Xu, W.
1 / 33 shared
Hou, S.
1 / 2 shared
Leary, E.
1 / 1 shared
Christensen, K. E.
1 / 1 shared
González, M. T.
1 / 1 shared
Wu, Qingqing
2 / 2 shared
Agraït, N.
1 / 1 shared
Nichols, R. J.
1 / 3 shared
Tejerina, L.
1 / 1 shared
Higgins, S. J.
1 / 1 shared
Anderson, H. L.
1 / 5 shared
Rubio-Bollinger, G.
1 / 1 shared
Cserti, J.
1 / 1 shared
Koltai, J.
1 / 1 shared
Kukucska, G.
1 / 1 shared
Tajkov, Z.
1 / 1 shared
Kormányos, A.
1 / 1 shared
Alanazy, A.
1 / 1 shared
Rakyta, P.
1 / 1 shared
Noori, Mohammed
2 / 2 shared
Grace, Iain M.
1 / 4 shared
Famili, Marjan
1 / 1 shared
Manrique, David Zsolt
1 / 1 shared
García-Suárez, Víctor M.
1 / 1 shared
Ferrer, Jaime
1 / 5 shared
Redouté, Jean-Michel
1 / 5 shared
Zayegh, Aladin
1 / 1 shared
Lai, Daniel T. H.
1 / 1 shared
Chart of publication period
2023
2022
2020
2019
2018
2017
2016
2013

Co-Authors (by relevance)

  • Lambert, Colin John
  • Kolosov, Oleg Victor
  • Wang, Xinati
  • Jay, Michael
  • Lamantia, Angelo
  • Robinson, Bj
  • Spiece, Jean
  • Evangeli, Charalambos
  • Sangtarash, Sara
  • Molina-Mendoza, Aday J.
  • Ramrakhiyani, Kunal Lulla
  • Mucientes, Marta
  • Mueller, Thomas
  • Forcieri, Leonardo
  • Jarvis, Samuel Paul
  • Dekkiche, Hervé
  • Bryce, Martin R.
  • Wang, Xintai
  • Xu, W.
  • Hou, S.
  • Leary, E.
  • Christensen, K. E.
  • González, M. T.
  • Wu, Qingqing
  • Agraït, N.
  • Nichols, R. J.
  • Tejerina, L.
  • Higgins, S. J.
  • Anderson, H. L.
  • Rubio-Bollinger, G.
  • Cserti, J.
  • Koltai, J.
  • Kukucska, G.
  • Tajkov, Z.
  • Kormányos, A.
  • Alanazy, A.
  • Rakyta, P.
  • Noori, Mohammed
  • Grace, Iain M.
  • Famili, Marjan
  • Manrique, David Zsolt
  • García-Suárez, Víctor M.
  • Ferrer, Jaime
  • Redouté, Jean-Michel
  • Zayegh, Aladin
  • Lai, Daniel T. H.
OrganizationsLocationPeople

article

Radical enhancement of molecular thermoelectric efficiency

  • Sangtarash, Sara
  • Sadeghi, Hatef
Abstract

There is a worldwide race to find materials with high thermoelectric efficiency to convert waste heat to useful energy in consumer electronics and server farms. Here, we propose a radically new method to enhance simultaneously the electrical conductance and thermopower and suppress heat transport through ultra-thin materials formed by single radical molecules. This leads to a significant enhancement of room temperature thermoelectric efficiency. The proposed strategy utilises the formation of transport resonances due to singly occupied spin orbitals in radical molecules. This enhances the electrical conductance by a couple of orders of magnitude in molecular junctions formed by nitroxide radicals compared to the non-radical counterpart. It also increases the Seebeck coefficient to high values of 200 μV K-1. Consequently, the power factor increases by more than two orders of magnitude. In addition, the asymmetry and destructive phonon interference that was induced by the stable organic radical side group significantly decreases the phonon thermal conductance. The enhanced power factor and suppressed thermal conductance in the nitroxide radical lead to the significant enhancement of room temperature ZT to values ca. 0.8. Our result confirms the great potential of stable organic radicals to form ultra-thin film thermoelectric materials with unprecedented thermoelectric efficiency.

Topics
  • impedance spectroscopy
  • thin film