People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Meier, Sebastian
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Structural and functional characterization of the novel endo-α(1,4)-fucoidanase Mef1 from the marine bacterium Muricauda eckloniaecitations
- 2023Synthesis of poly(ethylene glycol)-co-poly(caprolactone) di- and triblock copolymers and effect of architecture, dispersity and end-functionalisation on their aqueous self-assemblycitations
- 2023Synthesis of poly(ethylene glycol)-co-poly(caprolactone) di- and triblock copolymers and effect of architecture, dispersity and end-functionalisation on their aqueous self-assemblycitations
- 2022The Endo-α(1,3)-Fucoidanase Mef2 Releases Uniquely Branched Oligosaccharides from Saccharina latissima Fucoidanscitations
- 2022Reactivity of Polysilazanes Allows Catalyst‐Free Curing of Siliconescitations
- 2020Mechanism and Malleability of Glucose Dehydration to HMF: Entry Points and Water-Induced Diversionscitations
Places of action
Organizations | Location | People |
---|
article
Mechanism and Malleability of Glucose Dehydration to HMF: Entry Points and Water-Induced Diversions
Abstract
The stoichiometric dehydration of glucose to 5-hydroxymethylfurfural (HMF) converts an abundant substrate to a versatile chemical. HMF formation can be optimized by using suitable solvents including ionic liquids and DMSO, and by cosolvents such as water. A prerequisite for efficient glucose influx into pathways to HMF is the isomerization of glucose to a ketose, typically the Lewis acid catalyzed conversion to fructose. Here, influx of glucose into pathways to HMF is compared through kinetic observations under reaction conditions and through isotope distributions in the product. Diversions from the path to HMF in the presence of water are described for the popular CrCl3/DMSO system. Addition of water to this system favors the formation of a useful byproduct instead of a mixture of inert compounds.