People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Momand, Jamo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Ultrathin, sputter-deposited, amorphous alloy films of ruthenium and molybdenumcitations
- 2022Ultrathin, sputter-deposited, amorphous alloy films of ruthenium and molybdenumcitations
- 2022Phase Separation in Ge-Rich GeSbTe at Different Length Scales: Melt-Quenched Bulk versus Annealed Thin Filmscitations
- 2022Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin filmscitations
- 2022Nanostructure and thermal power of highly-textured and single-crystal-like Bi2Te3 thin filmscitations
- 2021Polytriphenylamine composites for energy storage electrodes:Effect of pendant vs. backbone polymer architecture of the electroactive groupcitations
- 2021Pulsed laser deposited stoichiometric GaSb films for optoelectronic and phase change memory applicationscitations
- 2021Pulsed laser deposited stoichiometric GaSb films for optoelectronic and phase change memory applicationscitations
- 2021Controlling phase separation in thermoelectric Pb1-xGexTe to minimize thermal conductivitycitations
- 2021Polytriphenylamine composites for energy storage electrodescitations
- 2020Single-Source, Solvent-Free, Room Temperature Deposition of Black γ-CsSnI 3 Filmscitations
- 2020Differences in Sb2Te3 growth by pulsed laser and sputter depositioncitations
- 2020Single‐Source, Solvent‐Free, Room Temperature Deposition of Black γ‐CsSnI3 Filmscitations
- 2019Chemical Solution Deposition of Ordered 2D Arrays of Room-Temperature Ferrimagnetic Cobalt Ferrite Nanodotscitations
- 2019High Resolution Imaging of Chalcogenide Superlattices for Data Storage Applicationscitations
- 2019Low temperature epitaxy of tungsten-telluride heterostructure filmscitations
- 2019High Resolution Imaging of Chalcogenide Superlattices for Data Storage Applications:Progress and Prospectscitations
- 2018Tailoring the epitaxy of Sb2Te3 and GeTe thin films using surface passivationcitations
- 2017Formation of resonant bonding during growth of ultrathin GeTe filmscitations
- 2016Crystallization Kinetics of Supercooled Liquid Ge-Sb Based on Ultrafast Calorimetrycitations
- 2016Ordered Peierls distortion prevented at growth onset of GeTe ultra-thin filmscitations
- 2014Reversible amorphous-crystalline phase changes in a wide range of Se1-xTex alloys studied using ultrafast differential scanning calorimetrycitations
Places of action
Organizations | Location | People |
---|
article
Low temperature epitaxy of tungsten-telluride heterostructure films
Abstract
Transition-metal di-chalcogenides (TMDCs) possess exceptional properties such as a direct bandgap and strong light interaction at monolayer thickness, making them excellently suited for nanoscale devices. Even more so, TMDCs can acquire unique and improved properties by stacking them with other 2D materials in van der Waals heterostructures. Currently, the growth of TMDC crystals frequently occurs using hightemperature processes like chemical vapor deposition or the Bridgman method. To comply with industrial standards, however, it is crucial to develop low-temperature procedures that ensure clean, large-area and lattice-oriented layers. Especially for a material such as WTe2, where W has an extremely high melting point, this is a difficult task. In this study, we employed pulsed laser deposition (PLD) using a single-step process at low substrate temperature (210 degrees C) to resolve these challenges. This deposition technique circumvents the high melting temperature of W, employing an ablation process, which yields simple stoichiometry control. By employing a seed layer of Bi2Te3, we perform WTe2 epitaxy on various substrates. The resulting films are clean and high quality 1T' phase, as verified with reflective high-energy electron diffraction (RHEED) and transmission electron microscopy (TEM). The reported methods allow for fabrication of TMDC thin films for devices, and furthermore shows that PLD is excellently suited for epitaxial growth of these 2D heterostructures.