People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Henkelis, Susan E.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
A single crystal study of CPO-27 and UTSA-74 for nitric oxide storage and release
Abstract
Single crystal CPO-27-Mg, -Zn and its structural isomer UTSA-74 have been prepared through use of acid modulators; salicylic acid and benzoic acid, respectively. Salicylic acid directed the synthesis of CPO-27-Mg/Zn whereas benzoic acid the synthesis of UTSA-74. Through “in-house” SCXRD, DMF was seen to bind to the Zn<sup>2+</sup> and water to the Mg<sup>2+</sup> metal sites in CPO-27-M. Although the synthesis conditions were analogous for UTSA-74, DMF is too large to bind due to the proximity of the binding sites. A dissolution–recrystallisation transformation was examined from UTSA-74 to CPO-27-Zn. The release of nitric oxide was measured for each material.