Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Olalla, Sánchez-Sobrado

  • Google
  • 5
  • 10
  • 227

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2020Photonic-structured TCO front contacts yielding optical and electrically enhanced thin-film solar cells23citations
  • 2019Wave-optical front structures on silicon and perovskite thin-film solar cells18citations
  • 2019Lightwave trapping in thin film solar cells with improved photonic-structured front contacts33citations
  • 2019Photonic-structured TiO 2 for high-efficiency, flexible and stable Perovskite solar cells119citations
  • 2017Low-temperature spray-coating of high-performing ZnO34citations

Places of action

Chart of shared publication
Mateus, Tiago
3 / 12 shared
Águas, Hugo
5 / 41 shared
Costa, João
1 / 2 shared
Nunes, Daniela
1 / 39 shared
Martins, Rodrigo
5 / 166 shared
Mendes, Manuel Joao
5 / 18 shared
Haque, Sirazul
3 / 4 shared
Beniaiche, Abdelkrim
1 / 1 shared
Marouf, Sara
1 / 1 shared
Kardarian, Kasra
1 / 3 shared
Chart of publication period
2020
2019
2017

Co-Authors (by relevance)

  • Mateus, Tiago
  • Águas, Hugo
  • Costa, João
  • Nunes, Daniela
  • Martins, Rodrigo
  • Mendes, Manuel Joao
  • Haque, Sirazul
  • Beniaiche, Abdelkrim
  • Marouf, Sara
  • Kardarian, Kasra
OrganizationsLocationPeople

article

Lightwave trapping in thin film solar cells with improved photonic-structured front contacts

  • Olalla, Sánchez-Sobrado
  • Mateus, Tiago
  • Águas, Hugo
  • Haque, Sirazul
  • Martins, Rodrigo
  • Mendes, Manuel Joao
Abstract

<p>Photonic microstructures placed at the topside of photovoltaic cells are currently one of the preferred light management solutions to obtain efficiency enhancement due to the increment of the optical absorption produced in the active medium of the devices. Herein, we present the results concerning a practical, low-cost and scalable approach to integrate metal-oxide based light trapping microstructures on the front contact of amorphous silicon thin film solar cells. A colloidal lithography method was used to pattern the wavelength-sized pyramidal-like features composing the structures, made of two different transparent materials, TiO<sub>2</sub> and IZO, allowing the detailed study of the influence of their geometrical parameters on the optoelectronic properties of the devices. These top coating structures are deposited as a post-process after the solar cell fabrication, thus facilitating and broadening their industrial applicability. Measurements of the light absorption, external quantum efficiency and I-V curves revealed that the structured coatings provide strong broadband improvements in the generated current, due to the suppression of reflected light at short wavelengths and the increment of the optical path length of the longer wavelengths (via light scattering), within the amorphous silicon layer. As a result, in the four types of structures analyzed in this study, remarkable increments were achieved in the cells' efficiencies (up to 14.4%) and generated currents (up to 21.5%), with respect to the flat reference cells.</p>

Topics
  • microstructure
  • amorphous
  • thin film
  • Silicon
  • lithography
  • light scattering