Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vermeulen, Nathalie

  • Google
  • 6
  • 31
  • 131

Vrije Universiteit Brussel

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2022Simultaneous modal phase and group velocity matching in microstructured optical fibers for second harmonic generation with ultrashort pulses8citations
  • 20203D direct laser writing of microstructured optical fiber tapers on single-mode fibers for mode-field conversion37citations
  • 2018Localized optical- quality doping of graphene on silicon waveguides through a TFSA- containing polymer matrix2citations
  • 2014DC current induced second order optical nonlinearity in graphene84citations
  • 2013B-Calm: An open-source multi-GPU-based 3D-FDTD with multi-pole dispersion for plasmonicscitations
  • 2010High-contrast all-glass volumetric photonic crystalcitations

Places of action

Chart of shared publication
Baghdasaryan, Tigran
2 / 8 shared
Geernaert, Thomas
1 / 37 shared
Tishchenko, Artemii
1 / 1 shared
Berghmans, Francis
1 / 45 shared
Van Erps, Jurgen
3 / 21 shared
Kumar, Saurav
1 / 2 shared
Thienpont, Hugo
4 / 83 shared
Vanmol, Koen
1 / 3 shared
Watte, Jan
1 / 4 shared
Misseeuw, Lara Renée
1 / 1 shared
Khoder, Mulham
1 / 1 shared
Vandriessche, Isabelle
1 / 1 shared
Dubruel, Peter
1 / 31 shared
Feigel, Benjamin
1 / 1 shared
Pasternak, Iwona
1 / 20 shared
Ciuk, Tymoteusz
1 / 10 shared
Strupinski, Wlodek
1 / 16 shared
Krajewska, Aleksandra
1 / 11 shared
Van Vlierberghe, Sandra
1 / 27 shared
Cheng, Jinluo
1 / 1 shared
Sipe, J.
1 / 1 shared
Ly-Gagnon, D. S.
1 / 2 shared
Miller, David A. B.
1 / 2 shared
Debaes, Christof
1 / 8 shared
Wahl, Pierre
1 / 2 shared
Filipkowski, A.
1 / 2 shared
Caloen, G. Van
1 / 1 shared
Kujawa, I.
1 / 5 shared
Pysz, D.
1 / 7 shared
Stepien, R.
1 / 6 shared
Buczynski, R.
1 / 10 shared
Chart of publication period
2022
2020
2018
2014
2013
2010

Co-Authors (by relevance)

  • Baghdasaryan, Tigran
  • Geernaert, Thomas
  • Tishchenko, Artemii
  • Berghmans, Francis
  • Van Erps, Jurgen
  • Kumar, Saurav
  • Thienpont, Hugo
  • Vanmol, Koen
  • Watte, Jan
  • Misseeuw, Lara Renée
  • Khoder, Mulham
  • Vandriessche, Isabelle
  • Dubruel, Peter
  • Feigel, Benjamin
  • Pasternak, Iwona
  • Ciuk, Tymoteusz
  • Strupinski, Wlodek
  • Krajewska, Aleksandra
  • Van Vlierberghe, Sandra
  • Cheng, Jinluo
  • Sipe, J.
  • Ly-Gagnon, D. S.
  • Miller, David A. B.
  • Debaes, Christof
  • Wahl, Pierre
  • Filipkowski, A.
  • Caloen, G. Van
  • Kujawa, I.
  • Pysz, D.
  • Stepien, R.
  • Buczynski, R.
OrganizationsLocationPeople

article

Localized optical- quality doping of graphene on silicon waveguides through a TFSA- containing polymer matrix

  • Misseeuw, Lara Renée
  • Vermeulen, Nathalie
  • Khoder, Mulham
  • Vandriessche, Isabelle
  • Thienpont, Hugo
  • Dubruel, Peter
  • Feigel, Benjamin
  • Pasternak, Iwona
  • Ciuk, Tymoteusz
  • Van Erps, Jurgen
  • Strupinski, Wlodek
  • Krajewska, Aleksandra
  • Van Vlierberghe, Sandra
Abstract

<p>The use of graphene in optical and photonic applications has gained much attention in recent years. To maximize the exploitation of graphene's extraordinary optical properties, precise control over its Fermi level (e.g. by means of chemical doping) will be of vital importance. In this work, we show the usage of a versatile p-doping strategy based on the incorporation of bis(trifluoromethanesulfonyl)amide (TFSA), functioning as an active p-dopant molecule, into a poly(2,2,3,3,4,4,5,5-octafluoropentyl methacrylate) (POFPMA) polymer matrix. The TFSA/POFPMA dopant can be utilized both onto large size graphene regions via spin coating and on small predefined spatial zones of micrometer dimension by localized inkjet printing. Whereas pure TFSA suffers from a clustered layer deposition combined with environmental instability, the application of the POFPMA polymer matrix yields doping layers revealing superior properties counteracting the existing shortcomings of pure TFSA. A first key finding relates to the optical quality of the dopant layer. We obtain a layer with an extremely low surface roughness (0.4-0.8 nm/25 μm<sup>2</sup>) while exhibiting very high transparency (absorbance &lt;0.05%) over the 500-1900 nm wavelength range, with strongly enhanced doping stability as a function of time up to several weeks (for inkjet-printed deposition) and months (for spin coated deposition). Finally, the doping efficiency is very high, reaching a carrier density around +4 × 10<sup>13</sup> cm<sup>−2</sup> whereas the optical transmission of a graphene-covered Si waveguide revealed a strong improvement (4.22 dB transmission increase per 100 μm graphene length at the wavelength of 1550 nm) after deposition of the dopant via inkjet printing.</p>

Topics
  • Deposition
  • density
  • impedance spectroscopy
  • surface
  • polymer
  • Silicon
  • spin coating