People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hofmann, Anna
Chalmers University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Advanced structural brain aging in preclinical autosomal dominant Alzheimer diseasecitations
- 2019Thermally Activated in Situ Doping Enables Solid-State Processing of Conducting Polymers.citations
- 2019Solar Energy Storage by Molecular Norbornadiene–Quadricyclane Photoswitches: Polymer Film Devicescitations
- 2018Highly stable doping of a polar polythiophene through co-processing with sulfonic acids and bistriflimidecitations
- 2018Enhanced n-Doping Efficiency of a Naphthalenediimide-Based Copolymer through Polar Side Chains for Organic Thermoelectricscitations
Places of action
Organizations | Location | People |
---|
article
Highly stable doping of a polar polythiophene through co-processing with sulfonic acids and bistriflimide
Abstract
Doping of organic semiconductors is currently an intensely studied field, since it is a powerful tool to optimize the performance of various organic electronic devices, ranging from organic solar cells, to thermoelectric modules, and bio-medical sensors. Despite recent advances, there is still a need for the development of highly conducting polymer:dopant systems with excellent long term stability and a high resistance to elevated temperatures. In this work we study the doping of the polar polythiophene derivative p(g42T-T) by various sulfonic acids and bistriflimide via different processing techniques. We demonstrate that simple co-processing of p(g42T-T) with an acid dopant yields conductivities of up to 120 S cm−1, which remain stable for more than six months under ambient conditions. Notably, a high conductivity is only achieved if the doping is carried out in air, which can be explained with a doping process that involves an acid mediated oxidation of the polymer through O2. P(g42T-T) doped with the non-toxic and inexpensive 1,3-propanedisulfonic acid was found to retain its electrical conductivity for at least 20 hours upon annealing at 120 °C, which allowed the bulk processing of the doped polymer into conducting, free-standing and flexible films and renders the di-acid a promising alternative to commonly used redox dopants.