People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Khademhosseini, Ali
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023A handheld bioprinter for multi-material printing of complex constructscitations
- 2023Aerogel-Based Biomaterials for Biomedical Applications: From Fabrication Methods to Disease-Targeting Applicationscitations
- 2023Drug‐Eluting Shear‐Thinning Hydrogel for the Delivery of Chemo‐ and Immunotherapeutic Agents for the Treatment of Hepatocellular Carcinomacitations
- 2022Assessing the aneurysm occlusion efficacy of a shear-thinning biomaterial in a 3D-printed model.citations
- 2022Additively manufactured metallic biomaterialscitations
- 2021In situ 3D printing of implantable energy storage devicescitations
- 2019The future of layer-by-layer assembly: A tribute to ACS Nano associate editor Helmuth Möhwaldcitations
- 2019Biocompatible Carbon Nanotube-Based Hybrid Microfiber for Implantable Electrochemical Actuator and Flexible Electronic Applications.citations
- 2018Nanobead-on-string composites for tendon tissue engineeringcitations
- 2017Biodegradable elastic nanofibrous platforms with integrated flexible heaters for on-demand drug deliverycitations
- 2016Nanotechnology in textilescitations
- 2016Platinum nanopetal-based potassium sensors for acute cell death monitoringcitations
Places of action
Organizations | Location | People |
---|
article
Nanobead-on-string composites for tendon tissue engineering
Abstract
Tissue engineering holds great potential in the production of functional substitutes to restore, maintain or improve the functionality in defective or lost tissues. So far, a great variety of techniques and approaches for fabrication of scaffolds have been developed and evaluated, allowing researchers to tailor precisely the morphological, chemical and mechanical features of the final constructs. Electrospinning of biocompatible and biodegradable polymers is a popular method for producing homogeneous nanofibrous structures, which might reproduce the nanosized organization of the tendons. Moreover, composite scaffolds obtained by incorporating nanoparticles within electrospun fibers have been lately explored in order to enhance the properties and the functionalities of the pristine polymeric constructs. The present study is focused on the design and fabrication of biocompatible electrospun nanocomposite fibrous scaffolds for tendon regeneration. A mixture of poly(amide 6) and poly(caprolactone) is electrospun to generate constructs with mechanical properties comparable to that of native tendons. To improve the biological activity of the constructs and modify their topography, wettability, stiffness and degradation rate, we incorporated silica particles into the electrospun substrates. The use of nanosize silica particles enables us to form bead-on-fiber topography, allowing the better exposure of ceramic particles to better profit their beneficial characteristics. In vitro biocompatibility studies using L929 fibroblasts demonstrated that the presence of 20 wt% of silica nanoparticles in the engineered scaffolds enhanced cell spreading and proliferation as well as extracellular matrix deposition. The results reveal that the electrospun nanocomposite scaffold represents an interesting candidate for tendon tissue engineering.