Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sprick, Rs

  • Google
  • 5
  • 39
  • 990

Engineering and Physical Sciences Research Council

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Why do sulfone-containing polymer photocatalysts work so well for sacrificial hydrogen evolution from water?50citations
  • 2021Time-resolved Raman spectroscopy of polaron formation in a polymer photocatalyst20citations
  • 2018Maximising the Hydrogen Evolution Activity in Organic Photocatalysts by Co-polymerisationcitations
  • 2018Maximising the hydrogen evolution activity in organic photocatalysts by co-polymerisation95citations
  • 2015Tunable organic photocatalysts for visible-light-driven hydrogen evolution825citations

Places of action

Chart of shared publication
Cooper, Andrew I.
4 / 14 shared
Shi, Xingyuan
1 / 9 shared
Woods, Duncan J.
1 / 1 shared
Durrant, Jr
1 / 22 shared
Hillman, Sam A. J.
1 / 1 shared
Nelson, Jenny
1 / 21 shared
Sit, Wai-Yu
1 / 1 shared
Pearce, Drew
1 / 6 shared
Bai, Yang
1 / 9 shared
Zwijnenburg, Martijn A.
3 / 4 shared
Cowan, Alexander J.
1 / 1 shared
Saeed, Khezar H.
1 / 1 shared
Rosseinsky, Mj
1 / 11 shared
Gardner, Am
1 / 1 shared
Piercy, Vl
1 / 2 shared
Prentice, Aw
1 / 2 shared
Sazanovich, Iv
1 / 2 shared
Neri, Gaia
1 / 1 shared
Li, Chao
1 / 7 shared
Alston, Bm
1 / 1 shared
Jelfs, Ke
1 / 2 shared
Berardo, E.
1 / 1 shared
Cooper, Ai
1 / 2 shared
Turcani, L.
1 / 1 shared
Wilbraham, L.
1 / 2 shared
Catherine M., A.
1 / 1 shared
Zwijnenburg, Ma
1 / 2 shared
Jelfs, Kim E.
1 / 4 shared
Aitchison, Catherine M.
1 / 1 shared
Berardo, Enrico
1 / 2 shared
Alston, Ben M.
1 / 1 shared
Turcani, Lukas
1 / 1 shared
Wilbraham, Liam
1 / 1 shared
Jiang, Jx
1 / 1 shared
Bonillo, Baltasar
1 / 1 shared
Ren, Shijie
1 / 2 shared
Guiglion, Pierre
1 / 1 shared
Adams, Dj
1 / 2 shared
Ratvijitvech, Thanchanok
1 / 3 shared
Chart of publication period
2022
2021
2018
2015

Co-Authors (by relevance)

  • Cooper, Andrew I.
  • Shi, Xingyuan
  • Woods, Duncan J.
  • Durrant, Jr
  • Hillman, Sam A. J.
  • Nelson, Jenny
  • Sit, Wai-Yu
  • Pearce, Drew
  • Bai, Yang
  • Zwijnenburg, Martijn A.
  • Cowan, Alexander J.
  • Saeed, Khezar H.
  • Rosseinsky, Mj
  • Gardner, Am
  • Piercy, Vl
  • Prentice, Aw
  • Sazanovich, Iv
  • Neri, Gaia
  • Li, Chao
  • Alston, Bm
  • Jelfs, Ke
  • Berardo, E.
  • Cooper, Ai
  • Turcani, L.
  • Wilbraham, L.
  • Catherine M., A.
  • Zwijnenburg, Ma
  • Jelfs, Kim E.
  • Aitchison, Catherine M.
  • Berardo, Enrico
  • Alston, Ben M.
  • Turcani, Lukas
  • Wilbraham, Liam
  • Jiang, Jx
  • Bonillo, Baltasar
  • Ren, Shijie
  • Guiglion, Pierre
  • Adams, Dj
  • Ratvijitvech, Thanchanok
OrganizationsLocationPeople

article

Maximising the hydrogen evolution activity in organic photocatalysts by co-polymerisation

  • Cooper, Andrew I.
  • Zwijnenburg, Martijn A.
  • Jelfs, Kim E.
  • Aitchison, Catherine M.
  • Berardo, Enrico
  • Alston, Ben M.
  • Sprick, Rs
  • Turcani, Lukas
  • Wilbraham, Liam
Abstract

<p>The hydrogen evolution activity of a polymeric photocatalyst was maximised by co-polymerisation, using both experimental and computational screening, for a family of 1,4-phenylene/2,5-thiophene co-polymers. The photocatalytic activity is the product of multiple material properties that are affected in different ways by the polymer composition and microstructure. For the first time, the photocatalytic activity was shown to be a function of the arrangement of the building blocks in the polymer chain as well as the overall composition. The maximum in hydrogen evolution for the co-polymer series appears to result from a trade-off between the fraction of light absorbed and the thermodynamic driving force for proton reduction and sacrificial electron donor oxidation, with the co-polymer of p-terphenyl and 2,5-thiophene showing the highest activity.</p>

Topics
  • impedance spectroscopy
  • microstructure
  • polymer
  • Hydrogen