People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Breemen, Lambèrt C. A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024A macroscopic viscoelastic viscoplastic constitutive model for porous polymers under multiaxial loading conditionscitations
- 2024Vezel-geïnduceerde kristallisatie in rekstromingen ; Fiber-induced crystallization in elongational flowscitations
- 2024Fiber-induced crystallization in elongational flowscitations
- 2023Deformation kinetics of single-fiber polypropylene composites:Adhesion improvement at the expense of toughness
- 2023Deformation kinetics of single-fiber polypropylene composites
- 2023Shear-Induced Structure Formation in MAH-g-PP Compatibilized Polypropylenescitations
- 2022In Situ Fabrication, Manipulation, and Mechanical Characterization of Free-Standing Silica Thin Films Using Focused Ion Beam Scanning Electron Microscopycitations
- 2022In Situ Fabrication, Manipulation, and Mechanical Characterization of Free-Standing Silica Thin Films Using Focused Ion Beam Scanning Electron Microscopycitations
- 2022Laser sintering of PA12 particles studied by in-situ optical, thermal and X-ray characterizationcitations
- 2020Polarization modulated infrared spectroscopy:A pragmatic tool for polymer science and engineeringcitations
- 2020Polymer spheres
- 2020Polarization modulated infrared spectroscopycitations
- 2020Transient dynamics of cold-rolled and subsequently thermally rejuvenated atactic-polystyrene using broadband dielectric spectroscopycitations
- 2020Thermally Reversible Diels–Alder Bond-Containing Acrylate Networks Showing Improved Lifetimecitations
- 2020Thermally Reversible Diels–Alder Bond-Containing Acrylate Networks Showing Improved Lifetimecitations
- 2019Predicting embrittlement of polymer glasses using a hydrostatic stress criterioncitations
- 2019Hydrostatic stress as indicator for wear initiation in polymer tribologycitations
- 2019Effect of low-temperature physical aging on the dynamic transitions of atactic polystyrene in the glassy statecitations
- 2019A novel experimental setup for in-situ optical and X-ray imaging of laser sintering of polymer particlescitations
- 2019Temperature dependent two-body abrasive wear of polycarbonate surfacescitations
- 2019Laser sintering of polymer particle pairs studied by in-situ visualizationcitations
- 2018Contact mechanics of high-density polyethylene: Effect of pre-stretch on the frictional response and the onset of wearcitations
- 2018Thin film mechanical characterization of UV-curing acrylate systemscitations
- 2018Contact mechanics of polyolefins: effect of pre-stretch on the frictional response and the onset of wear
- 2017Experimental setup for in situ visualization studies of laser sintering of polymer particles
- 2011Criteria to predict the embrittlement of polycarbonatecitations
- 2011Extending the EGP constitutive model for polymer glasses to multiple relaxation timescitations
- 2009Predicting the long-term mechanical performance of polycarbonate from thermal history during injection moldingcitations
- 2009Predicting the yield stress of polymer glasses directly from processing conditions: application to miscible systemscitations
- 2009Numerical simulation of flat-tip micro-indentation of glassy polymers: influence of loading speed and thermodynamic statecitations
- 2006Indentation: the experimenter's holy grail for small-scale polymer characterization?
- 2006Modelling large-strain deformation of thermo-rheologically complex materials : characterisation and validation of PMMA and iPP
- 2005Quantitative prediction of long-term failure of Polycarbonatecitations
- 2004Structure, deformation, and failure of flow-oriented semicrystalline polymerscitations
Places of action
Organizations | Location | People |
---|
article
Laser sintering of polymer particle pairs studied by in-situ visualization
Abstract
Merging of particle pairs during selective laser sintering (SLS) of polymers is vital in defining the final part properties. Depending on the sintering conditions, polymers can undergo full or partial sintering whereby incomplete sintering results in poor mechanical properties. At present, the underlying mechanisms and related conditions leading to various consolidation phenomena of polymer particles are not well understood. In the present work, a novel in-house developed experimental setup is used to perform laser sintering experiments on polystyrene (PS) particle doublets while performing in situ visualization of the sintering dynamics. From the recorded images, the evolution of the growth of the neck radius formed between both particles is analyzed as a function of time. Sintering conditions such as heating chamber temperature, laser pulse energy and duration, laser spot size and particle size are precisely controlled and systematically varied. A non-isothermal viscous sintering model is developed that allows qualitative prediction of the observed effects of the various parameters. It is shown that the sintering kinetics is determined by a complex interplay between the transient rheology caused by the finite relaxation times of the polymer and the time-dependent temperature profile which also affects the polymer viscosity. The combination of a full material characterization with sintering experiments under well-defined conditions has resulted in a general understanding of the effects of material and process parameters on laser sintering. Thereby a strong foundation is laid for the route towards rational design of laser sintering.