Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bjørnestad, Victoria Ariel

  • Google
  • 1
  • 2
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Resolving the structural interactions between antimicrobial peptides and lipid membranes using small-angle scattering methods47citations

Places of action

Chart of shared publication
Nielsen, Josefine Eilsø
1 / 3 shared
Lund, Reidar
1 / 11 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Nielsen, Josefine Eilsø
  • Lund, Reidar
OrganizationsLocationPeople

article

Resolving the structural interactions between antimicrobial peptides and lipid membranes using small-angle scattering methods

  • Bjørnestad, Victoria Ariel
  • Nielsen, Josefine Eilsø
  • Lund, Reidar
Abstract

<p>Using small angle X-ray and neutron scattering (SAXS/SANS) and detailed theoretical modelling we have elucidated the structure of the antimicrobial peptide, indolicidin, and the interaction with model lipid membranes of different anionic lipid compositions mimicking typical charge densities found in the cytoplasmic membrane of bacteria. First, we show that indolicidin displays a predominantly disordered, random chain conformation in solution with a small fraction (≈1%) of fiber-like nanostructures that are not dissolved at higher temperatures. The peptide is shown to strongly interact with the membranes at all charge densities without significantly perturbing the lipid bilayer structure. Instead, the results show that indolicidin inserts into the outer leaflet of the lipid vesicles causing a reduced local order of the lipid packing. This result is supported by an observed change in the melting point of the lipids upon addition of the peptide, as seen by differential scanning calorimetry experiments. The peptide does not to our observation affect the thickness of the membrane or form distinct structural pores in the membrane at physiologically relevant concentrations as has been previously suggested as an important mode of action. Finally, using sophisticated contrast variation SANS, we show that the peptide does not affect the random lateral distribution of anionic lipids in the membrane. Together, these results demonstrate that the structural aspects of the mode of action of antimicrobial peptides can be elucidated in detail using SAS techniques with liposomes as model systems.</p>

Topics
  • impedance spectroscopy
  • pore
  • experiment
  • differential scanning calorimetry
  • random
  • small-angle neutron scattering
  • small angle x-ray scattering