People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lambert, Colin John
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2023Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping modecitations
- 2023High Seebeck coefficient from isolated oligo-phenyl arrays on single layered graphene <i>via</i> stepwise assemblycitations
- 2022Thermoelectric properties of organic thin films enhanced by π-π stackingcitations
- 2021Optimised power harvesting by controlling the pressure applied to molecular junctionscitations
- 20212D bio-based nanomaterial as a green route to amplify the formation of hydrate phases of cement composites
- 2020Scale-Up of Room-Temperature Constructive Quantum Interference from Single Molecules to Self-Assembled Molecular-Electronic Filmscitations
- 2020Tuning the thermoelectrical properties of anthracene-based self-assembled monolayerscitations
- 2020Molecular-scale thermoelectricity: As simple as 'ABC'citations
- 2019Charge transfer complexation boosts molecular conductance through Fermi level pinningcitations
- 2019Unusual length dependence of the conductance in cumulene molecular wirescitations
- 2019Magic Number Theory of Superconducting Proximity Effects and Wigner Delay Times in Graphene-Like Moleculescitations
- 2018Stable-radicals increase the conductance and Seebeck coefficient of graphene nanoconstrictionscitations
- 2018Toward High Thermoelectric Performance of Thiophene and Ethylenedioxythiophene (EDOT) Molecular Wirescitations
- 2018Connectivity-driven bi-thermoelectricity in heteroatom-substituted molecular junctionscitations
- 2018Strain-induced bi-thermoelectricity in tapered carbon nanotubescitations
- 2018Thermoelectric Properties of 2,7-Dipyridylfluorene Derivatives in Single-Molecule Junctionscitations
- 2017Tuning the Seebeck coefficient of naphthalenediimide by electrochemical gating and dopingcitations
- 2017High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wirescitations
- 2017Thermoelectricity in vertical graphene-C60-graphene architecturescitations
- 2016Identification of a positive-Seebeck-coefficient exohedral fullerenecitations
- 2016Quasiparticle and excitonic gaps of one-dimensional carbon chainscitations
- 2016Cross-plane enhanced thermoelectricity and phonon suppression in graphene/MoS2 van der Waals heterostructurescitations
- 2009Anisotropic magnetoresistance in atomic chains of iridium and platinum from first principlescitations
- 2007Electronic properties of alkali- and alkaline-earth-intercalated silicon nanowires.citations
- 2006Tuning the electrical conductivity of nanotube-encapsulated metallocene wires.citations
- 2006Strongly correlated electron physics in nanotube-encapsulated metallocene chains.citations
- 2006Electronic properties of metallocene wirescitations
- 2006Spin and molecular electronics in atomically-generated orbital landscapes.citations
- 2005Point-contact Andreev reflection in ferromagnet/superconductor ballistic nanojunctionscitations
- 2004First principles simulation of the magnetic and structural properties of iron.citations
- 2000Thermopower in mesoscopic normal-superconducting structures.citations
Places of action
Organizations | Location | People |
---|
article
Charge transfer complexation boosts molecular conductance through Fermi level pinning
Abstract
Interference features in the transmission spectra can dominate charge transport in metal-molecule-metal junctions when they occur close to the contact Fermi energy ( E F ). Here, we show that by forming a charge-transfer complex with tetracyanoethylene (TCNE) we can introduce new constructive interference features in the transmission profile of electron-rich, thiophene-based molecular wires that almost coincide with E F . Complexation can result in a large enhancement of junction conductance, with very efficient charge transport even at relatively large molecular lengths. For instance, we report a conductance of 10 -3 G 0 (∼78 nS) for the ∼2 nm long α-quaterthiophene:TCNE complex, almost two orders of magnitude higher than the conductance of the bare molecular wire. As the conductance of the complexes is remarkably independent of features such as the molecular backbone and the nature of the contacts to the electrodes, our results strongly suggest that the interference features are consistently pinned near to the Fermi energy of the metallic leads. Theoretical studies indicate that the semi-occupied nature of the charge-transfer orbital is not only important in giving rise to the latter effect, but also could result in spin-dependent transport for the charge-transfer complexes. These results therefore present a simple yet effective way to increase charge transport efficiency in long and poorly conductive molecular wires, with important repercussions in single-entity thermoelectronics and spintronics.