People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ziemkowska, Wanda
Warsaw University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2021Microstructure and Mechanical Properties of Alumina Composites with Addition of Structurally Modified 2D Ti3C2 (MXene) Phasecitations
- 2021Influence of Ti3C2Tx MXene and Surface-Modified Ti3C2Tx MXene Addition on Microstructure and Mechanical Properties of Silicon Carbide Composites Sintered via Spark Plasma Sintering Methodcitations
- 2021Silicon carbide nanocomposites reinforced with disordered graphitic carbon formed in situ through oxidation of Ti3C2 MXene during sinteringcitations
- 2020Influence of MXene (Ti3C2) Phase Addition on the Microstructure and Mechanical Properties of Silicon Nitride Ceramicscitations
- 2020Magnesium tetraorganyl derivatives of group 13 metals as intermediate products in the synthesis of group 13 metal alkyls and arylscitations
- 2019Ti2C MXene Modified with Ceramic Oxide and Noble Metal Nanoparticles: Synthesis, Morphostructural Properties, and High Photocatalytic Activitycitations
- 20192D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapycitations
- 2019Influence of modification of Ti3C2MXene with ceramic oxide and noble metal nanoparticles on its antimicrobial properties and ecotoxicity towards selected algae and higher plantscitations
- 2019The toxicity in vitro of titanium dioxide nanoparticles modified with noble metals on mammalian cellscitations
- 2019Silicon carbide matrix composites reinforced with two-dimensional titanium carbide – manufacturing and propertiescitations
- 2017Mechanical properties of graphene oxide reinforced alumina matrix composites citations
- 2017Coordination modes of 2-mercapto-1,3-benzothiazolate in gallium and indium complexes
- 2017Controlled synthesis of graphene oxide/alumina nanocomposites using a new dry sol–gel method of synthesiscitations
- 2017Comparative Assessment of Biocidal Activity of Different RGO/Ceramic Oxide-Ag Nanocompositescitations
- 2015Aluminum, gallium and indium thiobenzoates: synthesis, characterization and crystal structurescitations
- 2015Role of Lewis bases in reactions of aluminum and gallium trialkyls with 2-mercaptobenzoxazolecitations
- 2014Nano-titanium oxide doped with gold, silver and palladium – synthesis and structural characterizationcitations
- 2013Benzoxaborolate ligands in group 13 metal complexescitations
Places of action
Organizations | Location | People |
---|
article
Influence of modification of Ti3C2MXene with ceramic oxide and noble metal nanoparticles on its antimicrobial properties and ecotoxicity towards selected algae and higher plants
Abstract
The number of investigations regarding the application of 2D nanosheets of MXenes in different technological areas is growing rapidly. Different surface modifications of MXenes have been introduced to date in order to tailor their properties. As a result, surface-modified MXenes could be released in the environment from filtration membranes, adsorbents, or photocatalysts. On the other hand, assessment of their environmental impact is practically unexplored. In the present study, we examined how modification of the antimicrobial Ti3C2 MXene with ceramic oxide and noble metal nanoparticles affects its toxic behavior. The expanded 2D sheets of the Ti3C2 MXene phase were modified with Al2O3/Ag, SiO2/Ag, and SiO2/Pd nanoparticles using the sol–gel method and extensively characterized. The obtained 2D nanocomposite structures were characterized by antibacterial properties. The ecotoxicological assays considered green algae (Desmodesmus quadricauda) as well as two higher plants: sorghum (Sorghum saccharatum) and charlock (Sinapis alba). Our results revealed that obtained nanomaterials can cause both stimulating and inhibiting effects towards algae, and the ecotoxicity depended on the concentration and the type of modification. The study reveals the intriguing property of pristine Ti3C2 which highly stimulated green algae growth at low concentrations. It also shows that modification of pristine Ti3C2 MXene with different nanoparticles changes the ecotoxicological effects of the resulting nanocomposite 2D structures. We have also indicated nanocomposite structures that does not revealed the toxic effect on tested organisms i.e. the Ti3C2 MXene surface-modified with Al2O3/Ag was not phyto- and eco-toxic. This work helps with better understanding of the reactivity of surface-modified MXenes towards chosen organisms, giving more information concerning the potential impact of tested nanocomposites on the ecosystems.