People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Speros, Joshua C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Straightforward synthesis of model polystyrene-
Abstract
<p>We report the synthesis and characterization of well-defined polystyrene-block-poly(vinyl alcohol) (PS-b-PVA) polymers and the corresponding polystyrene-block-poly(vinyl acetate) (PS-b-PVAc) precursors using a combination of atom transfer radical polymerization (ATRP), copper-catalyzed azide alkyne cycloaddition reaction, and reversible addition-fragmentation chain transfer (RAFT) polymerization. Bromine end-functional polystyrene was first prepared using activators regenerated by electron transfer ATRP. A xanthate mediated macro chain transfer agent carrying a triazole-based R-group was achieved by the CuAAC reaction between the corresponding azide-functional polystyrene and an alkyne functional O-ethyl S-prop-2-ynyl carbonodithioate. PS-b-PVAc diblock polymers were synthesized by RAFT polymerization using the triazole-based macro-CTA. The formation of well-defined PS-b-PVA diblock polymers was followed by <sup>1</sup>H nuclear magnetic resonance spectroscopy, infrared spectroscopy and size-exclusion chromatography. Thermal properties of the diblock polymer were analyzed by thermal gravimetric analysis and differential scanning calorimetry. The PVAc segments were hydrolyzed to give the corresponding PS-b-PVA block polymers. The morphology of the polymers was investigated by grazing-incidence small-angle scattering as well as atomic force microscopy.</p>