Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kilbey, S. Michael, Ii

  • Google
  • 1
  • 3
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Solution self-assembly of poly(3-hexylthiophene)–poly(lactide) brush copolymers: impact of side chain arrangement20citations

Places of action

Chart of shared publication
Ahn, Suk-Kyun
1 / 2 shared
Nam, Jinwoo
1 / 1 shared
Zhu, Jiahua
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Ahn, Suk-Kyun
  • Nam, Jinwoo
  • Zhu, Jiahua
OrganizationsLocationPeople

article

Solution self-assembly of poly(3-hexylthiophene)–poly(lactide) brush copolymers: impact of side chain arrangement

  • Ahn, Suk-Kyun
  • Nam, Jinwoo
  • Zhu, Jiahua
  • Kilbey, S. Michael, Ii
Abstract

We exploit the crowded intramolecular environment of brush copolymers and π-π interactions of poly(3-hexylthiophene) (P3HT) side chains to produce tailorable nanostructures by self-assembly in solution. A series of brush copolymers consisting of regioregular P3HT and amorphous poly(d,l-lactide) (PLA) side chains grafted on a poly(norbornene) backbone are synthesized via ring-opening metathesis polymerization (ROMP) of norbornenyl-functionalized P3HT and PLA macromonomers. Three P3HT-PLA brush random copolymers and three brush block copolymers are prepared to create pairs of brush random and block copolymers containing comparable composition ratios of P3HT and PLA side chains. The relative volume fraction of P3HT and PLA side chains in the brush copolymers dictates thermal properties and crystallinity with little dependency on the side chain arrangement. However, the nanoscale morphologies of brush copolymers in a selective solvent are significantly altered by the side chain arrangement as well as copolymer composition. The different self-assembly behaviors in solution are attributed to the molecular design: in the brush block copolymers, self-assembly is driven by P3HT crystallization through both intra- and intermolecular π-π interactions, but intramolecular π-π interactions are largely suppressed in the brush random copolymers. Thus, tailoring brush copolymer architecture during synthesis enables additional levels of control over π-π interactions between P3HT side chains that are not present in conventional linear P3HT-based copolymers. The ability to use macromolecular chain topology as a way to access or tailor π-conjugated nanostructures may be beneficial in the context of controlling morphology at the nanoscale or producing patterned thin films for optoelectronic applications.

Topics
  • impedance spectroscopy
  • amorphous
  • thin film
  • random
  • copolymer
  • block copolymer
  • crystallization
  • crystallinity
  • self-assembly
  • random copolymer