People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mariotti, Davide
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Low temperature plasma‐assisted double anodic dissolution: a new approach for the synthesis of GdFeO3 perovskite nanoparticlescitations
- 2024Low temperature plasma‐assisted double anodic dissolution: a new approach for the synthesis of GdFeO 3 perovskite nanoparticlescitations
- 2024Stability in Photoluminescence and Photovoltaic Properties of Formamidinium Lead Iodide Quantum Dots
- 2023A Single‐Step Process to Produce Carbon Nanotube‐Zinc Compound Hybrid Materialscitations
- 2021Carrier extraction from metallic perovskite oxide nanoparticlescitations
- 2021Understanding plasma–ethanol non-equilibrium electrochemistry during the synthesis of metal oxide quantum dotscitations
- 2020Tuning the Bandgap Character of Quantum‐Confined Si–Sn Alloyed Nanocrystalscitations
- 2019Nanostructured perovskite solar cells
- 2018Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystalscitations
- 2018Low-Loss and Tunable Localized Mid-Infrared Plasmons in Nanocrystals of Highly Degenerate InNcitations
- 2018Microplasma-assisted electrochemical synthesis of Co3O4 nanoparticles in absolute ethanol for energy applicationscitations
- 2017Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystalscitations
- 2017Charge carrier localised in zero-dimensional (CH 3 NH 3 ) 3 Bi 2 1 9 clusterscitations
- 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi219 clusterscitations
- 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi219 clusterscitations
- 2017Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusterscitations
- 2013Improved Optoelectronic Properties of Silicon Nanocrystals/Polymer Nanocomposites by Microplasma-Induced Liquid Chemistrycitations
Places of action
Organizations | Location | People |
---|
article
Microplasma-assisted electrochemical synthesis of Co3O4 nanoparticles in absolute ethanol for energy applications
Abstract
Plasma at the gas/liquid interface can promote a complex mixture of reactions in solution and microplasma-assisted direct-current anodic oxidation is an efficient and green process in synthesising nanoscale materials for various applications. In this study, we demonstrated the direct synthesis of crystalline Co<sub>3</sub>O<sub>4</sub> quantum dots, <i>ca</i>. 2-5 nm in size, by direct anodization of Co foil with charge balanced by the microplasma at the flowing-helium/pure-ethanol interface under ambient condition. The anodic oxidation of cobalt in ethanol was analysed after characterising the solution using nuclear magnetic resonance (NMR), light absorption, photoluminescence (PL), and the solid product using X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Using the microplasma with high voltage under ambient condition, ethanol was oxidised to acetate as the charge carrier and the size of Co<sub>3</sub>O<sub>4</sub> quantum dots can be controlled by the limiting current. The quantum dots from this method are well dispersed in ethanol and a dense coating for light absorption and a rectified diode can be processed directly from the suspension. These results reveals that microplasma-assisted anodisation in ethanol is an efficient and green route capable of manufacturing quantum dots at low-temperature and avoiding the use of extraneous ionic salts in electrolyte.