People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Maroto-Valer, Mercedes
Heriot-Watt University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024From brew to clean fuelcitations
- 2022Production of CH4 and CO on CuxO and NixOy coatings through CO2 photoreductioncitations
- 2022Core-shell TiO2-x-CuyO microspheres for photogeneration of cyclic carbonates under simulated sunlightcitations
- 2021Laser-manufactured glass microfluidic devices with embedded sensors
- 2021Comparative study of CO2 photoreduction using different conformations of CuO photocatalystcitations
- 2021Maskless laser prototyping of glass microfluidic devices
- 2020The effect of the layer-interlayer chemistry of LDHs on developing high temperature carbon capture materialscitations
- 2019Interlaced Laser Beam Scanning: A Method Enabling an Increase in the Throughput of Ultrafast Laser Machining of Borosilicate Glasscitations
- 2019Understanding Reactive Flow in Porous Media for CO2 Storage Applications
- 2019Life-cycle assessment of emerging CO2 mineral carbonation-cured concrete blocks: Comparative analysis of CO2 reduction potential and optimization of environmental impactscitations
- 2019Photo-generation of cyclic carbonates using hyper-branched Ru-TiO2citations
- 2018Laser-based fabrication of microfluidic devices for porous media applicationscitations
- 2018Rapid Laser Manufacturing of Microfluidic Devices from Glass Substratescitations
- 2017Fabrication of three-dimensional micro-structures in glass by picosecond laser micro-machining and welding
- 2017Coal-derived unburned carbons in fly ash: A reviewcitations
- 2015Evaluation of a Flue Gas Desulphurisation (FGD)-Gypsum from a Wet Limestone FGD as Adsorbent for Removal of Selenium in Water Streamscitations
- 2012Micro-silica for high-end application from carbon capture and storage by mineralisationcitations
- 2002Thermal degradation behavior of rigid polyurethane foams prepared with different fire retardant concentrations and blowing agentscitations
Places of action
Organizations | Location | People |
---|
article
Photo-generation of cyclic carbonates using hyper-branched Ru-TiO2
Abstract
<p>Anthropogenic CO2 is the main contributor to the increased concentration of greenhouse gases in the atmosphere, and thus utilising waste CO2 for the production of valuable chemicals is a very appealing strategy for reducing CO2 emissions. The catalytic fixation of CO2 with epoxides for the production of cyclic carbonates has gained increasing attention from the research community in search of an alternative to the homogeneous catalytic routes, which are currently being used in industry. A novel photocatalytic heterogeneous approach to generate cyclic carbonates is demonstrated in this work. Hyper-branched microstructured Ru modified TiO2 nanorods decorated with RuO2 nanoparticles, supported on fluorine-doped tin oxide (FTO) glass were fabricated for the first time and were used to catalyse the photo-generation of propylene carbonates from propylene oxides. Propylene carbonate was used as a reference for cyclic carbonates. The photo-generation of cyclic carbonates from epoxides and CO2 was carried out at a maximum temperature of 55 °C at 200 kPa in a stainless steel photoreactor with a quartz window, under solar irradiation for 6 h. The best performing photocatalyst exhibited an estimated selectivity of 83% towards propylene carbonates under the irradiation of a solar simulator.</p>