People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Noori, Yasir Jamal
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Temperature effects on the electrodeposition of semiconductors from a weakly coordinating solventcitations
- 2022Vertical and Lateral Electrodeposition of 2D Material Heterostructures
- 20222D material based optoelectronics by electroplating
- 2021Tungsten disulfide thin films via electrodeposition from a single source precursorcitations
- 2021Lateral growth of MoS2 2D material semiconductors over an insulator via electrodepositioncitations
- 2021Towards GaAs thin-film tracking detectorscitations
- 2020Large-area electrodeposition of few-layer MoS2 on graphene for 2D material heterostructurescitations
- 2020Chloroantimonate electrochemistry in dichloromethanecitations
- 2020Large-Area Electrodeposition of Ultra-Thin MoS2 on Graphene for 2D Material Heterostructure Photodetectors
- 2020Electrodeposition of MoS2 from dichloromethanecitations
- 2018Towards a 3D GeSbTe phase change memory with integrated selector by non-aqueous electrodepositioncitations
Places of action
Organizations | Location | People |
---|
article
Towards a 3D GeSbTe phase change memory with integrated selector by non-aqueous electrodeposition
Abstract
We have recently reported a new method for electrodeposition of thin film and nanostructured phase change memory (PCM) devices from a single, highly tuneable, non-aqueous electrolyte. The quality of the material was confirmed by phase cycling via electrical pulsed switching of both 100 nm nano-cells and thin film devices. This method potentially allows deposition into extremely small confined cells down to less than 5 nm, 3D lay-outs that require non-line-of-sight techniques, and seamless integration of integrated selector devices. As electrodeposition requires a conducting substrate, the key condition for electronic applications based on this method is the use of patterned metal lines as the working electrode during the electrodeposition process. In this paper we show design and fabrication of a 2D passive memory matrix in which the word lines act as the working electrode and nucleation site for the growth of confined cells of Ge-Sb-Te. We will discuss the precursor requirement for deposition from non-aqueous, weakly coodinating solvents, show transmission electron microscopy analysis of the electrodeposition growth process and elemental distribution in the deposits, and the fabrication and characterisation of the Ge-Sb-Te memory matrix.