People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Scott, Thomas Bligh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023An investigation of the reaction of metallic uranium with oxygen/nitrogen gas mixturescitations
- 2022Investigating the mechanical behaviour of Fukushima MCCI using synchrotron Xray tomography and digital volume correlationcitations
- 2021Investigating the microstructure and mechanical behaviour of simulant "lava-like" fuel containing materials from the Chernobyl reactor unit 4 meltdowncitations
- 2018A study of dynamic nanoscale corrosion initiation events by HS-AFMcitations
- 2018In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 2citations
- 2017Investigating corrosion using high-speed AFM
- 2017In-situ, time resolved monitoring of uranium in BFS:OPC grout. Part 1:citations
- 2016The crystallographic structure of the air-grown oxide on depleted uranium metalcitations
- 2016Structural effects in UO 2 thin films irradiated with U ionscitations
- 2016Atomic-scale Studies of Uranium Oxidation and Corrosion by Water Vapourcitations
- 2016Structural effects in UO2 thin films irradiated with U ionscitations
- 2015Nuclear waste viewed in a new lightcitations
- 2015Structural deformation of metallic uranium surrounding hydride growth sitescitations
- 2015Characterisation of electrodeposited polycrystalline uranium dioxide thin films on nickel foil for industrial applicationscitations
- 2015An investigation into heterogeneity in a single vein-type uranium ore depositcitations
- 2015The effects of metal surface geometry on the formation of uranium hydridecitations
- 2015The role of ferrite in Type 316H austenitic stainless steels on the susceptibility to creep cavitationcitations
- 2015An investigation on the persistence of uranium hydride during storage of simulant nuclear waste packagescitations
- 2014Electronic properties of γ-U and superconductivity of U–Mo alloyscitations
- 2013A surface science study of the initial stages of hydrogen corrosion on uranium metal and the role played by grain microstructurecitations
- 2013Altering the hydriding behaviour of uranium metal by induced oxide penetration around carbo-nitride inclusionscitations
- 2011Enhanced reactivity of nanoscale iron particles through a vacuum annealing process.citations
- 2010Oxidative corrosion of carbide inclusions at the surface of uranium metal during exposure to water vapour.
Places of action
Organizations | Location | People |
---|
article
A study of dynamic nanoscale corrosion initiation events by HS-AFM
Abstract
Atomic force microscopes (AFMs) are capable of high-resolution mapping of structures and the measurement of mechanical properties at nanometre scales within gaseous, liquid and vacuum environments. The contact mode high-speed AFM (HS-AFM) developed at Bristol Nano Dynamics Ltd. operates at speeds orders of magnitude faster than conventional AFMs, and is capable of capturing multiple frames per second. This allows for direct observation of dynamic events in realtime, with nanometre lateral resolution and subatomic height resolution. HS-AFM is a valuable tool for the imaging of nanoscale corrosion initiation events, such as metastable pitting, grain boundary (GB) dissolution and short crack formation during stress corrosion cracking (SCC). Within this study HS-AFM was combined with SEM and FIB milling to produce a multifaceted picture of localised corrosion events occurring on thermally sensitised AISI 304 stainless steel in an aqueous solution of 1% sodium chloride (NaCl). HS-AFM measurements were performed in situ by imaging within a custom built liquid cell with parallel electrochemical control. The high resolution of the HS-AFM allowed for measurements to be performed at individual reaction sites, i.e. at specific GB carbide surfaces. Topographic maps of the sample surface allowed for accurate measurements of the dimensions of pits formed. Using these measurements it was possible to calculate, and subsequently model, the volumes of metal reacting with respect to time, and so the current densities and ionic fluxes at work. In this manner, the local electrochemistry at nanoscale reaction sites may be reconstructed.