People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brechin, Euan K.
University of Edinburgh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2025Robust Y and Lu TrenSal catalysts for ring-opening polymerisation
- 2021Oxidation state variation in bis-calix[4]arene supported decametallic Mn clusterscitations
- 2020With complements of the ligands: an unusual S-shaped [Mn7]2 assembly from tethered calixarenescitations
- 2020Putting the squeeze on molecule-based magnets: exploiting pressure to develop magneto-structural correlations in paramagnetic coordination compoundscitations
- 2019Effect of pi-aromatic spacers on the magnetic properties and slow relaxation of double stranded metallacyclophanes with a Ln(III)-M-II-M-II-Ln(III) (Ln(III) = Gd-III, Dy-III, Y-III; M-II = Ni-II, Co-II) linear topologycitations
- 2019Molecular multifunctionality preservation upon surface deposition for a chiral single-molecule magnetcitations
- 2018Order in disorder:solution and solid-state studies of [MM] wheels (M = Cr, Al; M = Ni, Zn)citations
- 2018Order in disorder: solution and solid-state studies of [MIII 2 MII 5] wheels (MIII = Cr, Al; MII = Ni, Zn)citations
- 2018Order in disordercitations
- 2010MCD spectroscopy of hexanuclear Mn(III) salicylaldoxime single-molecule magnetscitations
- 2010Pressure-Induced Jahn-Teller Switching in a Mn12 nanomagnetcitations
- 2010High pressure studies of hydroxo-bridged Cu(II) dimerscitations
- 2010The effect of pressure on the crystal structure of [Gd(PhCOO) 3(DMF)]n to 3.7 GPa and the transition to a second phase at 5.0 GPacitations
- 2010The effect of pressure on the crystal structure of [Gd(PhCOO)(3)(DMF)](n) to 3.7 GPa and the transition to a second phase at 5.0 GPacitations
- 2009High pressure induced spin changes and magneto-structural correlations in hexametallic SMMscitations
- 2008Grafting derivatives of Mn-6 single-molecule magnets with high anisotropy energy barrier on Au(111) surfacecitations
- 2005Magnetic and theoretical characterization of a ferromagnetic Mn(III) dimercitations
- 2005Studies of an enneanuclear manganese single-molecule magnetcitations
- 2004Synthesis, structure, and magnetic properties of a [Mn22] wheel-like single-molecule magnetcitations
- 2004New routes to polymetallic clusters: Fluoride-based tri-, deca-, and hexaicosametallic MnIII clusters and their magnetic propertiescitations
- 2004New routes to polymetallic clusterscitations
Places of action
Organizations | Location | People |
---|
article
Order in disorder
Abstract
<p>A family of heterometallic Anderson-type 'wheels' of general formula [MIII2MII5(hmp)12](ClO4)4 (where MIII = Cr or Al and MII = Ni or Zn giving [Cr2Ni5] (1), [Cr2Zn5] (2), [Al2Ni5] (3) and [Al2Zn5] (4); hmpH = 2-pyridinemethanol) have been synthesised solvothermally. The metallic skeleton common to all structures describes a centred hexagon with the MIII sites disordered around the outer wheel. The structural disorder has been characterised via single crystal X-ray crystallography, 1-3D 1H and 13C solution-state NMR spectroscopy of the diamagnetic analogue (4), and solid-state 27Al MAS NMR spectroscopy of compounds (3) and (4). Alongside ESI mass spectrometry, these techniques show that structure is retained in solution, and that the disorder is present in both the solution and solid-state. Solid-state dc susceptibility and magnetisation measurements on (2) and (3) reveal the Cr-Cr and Ni-Ni exchange interactions to be JCr-Cr = -1 cm-1 and JNi-Ni,r = -5 cm-1, JNi-Ni,c = 10 cm-1. Fixing these values allows us to extract JCr-Ni,r = -1.2 cm-1, JCr-Ni,c = 2.6 cm-1 for (1), the exchange between adjacent Ni and Cr ions on the ring is antiferromagnetic and between Cr ions on the ring and the central Ni ion is ferromagnetic.</p>