Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Du, Jun

  • Google
  • 3
  • 18
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023The effects of carbonaceous inclusions and their distributions on dynamic failure processes in boron carbide ceramics4citations
  • 2022Method for extraction and analysis of per- and poly-fluoroalkyl substances in contaminated asphalt11citations
  • 2018Quadratic and cubic hyperpolarizabilities of nitro-phenyl/-naphthalenyl/-anthracenyl alkynyl complexes15citations

Places of action

Chart of shared publication
Shaeffer, Matthew
1 / 1 shared
Haber, Richard A.
1 / 2 shared
Yang, Qirong
1 / 2 shared
Malhotra, Pinkesh
1 / 1 shared
Ramesh, K. T.
1 / 5 shared
Williams, Mike
1 / 2 shared
Navarro, Divina
1 / 1 shared
Kirby, Jason
1 / 1 shared
Davis, Greg
1 / 1 shared
Kookana, Rai
1 / 1 shared
Cifuentes, Marie P.
1 / 6 shared
Stranger, Robert
1 / 1 shared
Wang, Genmiao
1 / 2 shared
Quintana, Cristóbal
1 / 1 shared
Zhang, Chi
1 / 16 shared
Barlow, Adam
1 / 5 shared
Moxey, Graeme J.
1 / 4 shared
Kodikara, Mahesh S.
1 / 1 shared
Chart of publication period
2023
2022
2018

Co-Authors (by relevance)

  • Shaeffer, Matthew
  • Haber, Richard A.
  • Yang, Qirong
  • Malhotra, Pinkesh
  • Ramesh, K. T.
  • Williams, Mike
  • Navarro, Divina
  • Kirby, Jason
  • Davis, Greg
  • Kookana, Rai
  • Cifuentes, Marie P.
  • Stranger, Robert
  • Wang, Genmiao
  • Quintana, Cristóbal
  • Zhang, Chi
  • Barlow, Adam
  • Moxey, Graeme J.
  • Kodikara, Mahesh S.
OrganizationsLocationPeople

article

Quadratic and cubic hyperpolarizabilities of nitro-phenyl/-naphthalenyl/-anthracenyl alkynyl complexes

  • Cifuentes, Marie P.
  • Stranger, Robert
  • Wang, Genmiao
  • Quintana, Cristóbal
  • Zhang, Chi
  • Barlow, Adam
  • Moxey, Graeme J.
  • Kodikara, Mahesh S.
  • Du, Jun
Abstract

<p>1-Nitronaphthalenyl-4-alkynyl and 9-nitroanthracenyl-10-alkynyl complexes [M](CC-4-C<sub>10</sub>H<sub>6</sub>-1-NO<sub>2</sub>) ([M] = trans-[RuCl(dppe)<sub>2</sub>] (6b), trans-[RuCl(dppm)<sub>2</sub>] (7b), Ru(PPh<sub>3</sub>)<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>) (8b), Ni(PPh<sub>3</sub>)(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>) (9b), Au(PPh<sub>3</sub>) (10b)) and [M](CC-10-C<sub>14</sub>H<sub>8</sub>-9-NO<sub>2</sub>) ([M] = trans-[RuCl(dppe)<sub>2</sub>] (6c), trans-[RuCl(dppm)<sub>2</sub>] (7c), Ru(PPh<sub>3</sub>)<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>) (8c), Ni(PPh<sub>3</sub>)(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>) (9c), Au(PPh<sub>3</sub>) (10c)) were synthesized and their identities were confirmed by single-crystal X-ray diffraction studies. Electrochemical studies and a comparison to the 1-nitrophenyl-4-alkynyl analogues [M](CC-4-C<sub>6</sub>H<sub>4</sub>-1-NO<sub>2</sub>) ([M] = trans-[RuCl(dppe)<sub>2</sub>] (6a), trans-[RuCl(dppm)<sub>2</sub>] (7a), Ru(PPh<sub>3</sub>)<sub>2</sub>(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>) (8a), Ni(PPh<sub>3</sub>)(η<sup>5</sup>-C<sub>5</sub>H<sub>5</sub>) (9a), Au(PPh<sub>3</sub>) (10a)) reveal a decrease in oxidation potential for ruthenium and nickel complexes on proceeding from the phenyl- to naphthalenyl- and then anthracenyl-containing bridge. HOMO → LUMO transitions characteristic of MCC-1-C<sub>6</sub>H<sub>4</sub> to 4-C<sub>6</sub>H<sub>4</sub>-1-NO<sub>2</sub> charge transfer red-shift and gain in intensity on proceeding to the ruthenium complexes; the low-energy transitions have increasing ILCT character on proceeding from the phenyl- to naphthalenyl- and then anthracenyl-containing bridge. Spectroelectrochemical studies of the Ru-containing complexes reveal the appearance of low-energy bands corresponding to chloro-to-Ru<sup>III</sup> charge transfer that red-shift on proceeding from the phenyl- to naphthalenyl- and then anthracenyl-containing bridge. Second-order nonlinear optical (NLO) studies at 1064 nm employing ns pulses and the hyper-Rayleigh scattering technique reveal an increase in quadratic optical nonlinearity upon introduction of metal to the precursor alkyne to afford alkynyl complexes and on proceeding from ligated-gold to -nickel and then to -ruthenium for a fixed alkynyl ligand. Quadratic NLO data of the gold complexes optically transparent at the second-harmonic wavelength reveal an increase in β<sub>HRS</sub> on proceeding from the phenyl- to the naphthalenyl-containing complex. Broad spectral range third-order nonlinear optical studies employing fs pulses and the Z-scan technique reveal an increase in two-photon absorption cross-section on replacing ligated-gold by -nickel and then -ruthenium for a fixed alkynyl ligand. Computational studies undertaken using time-dependent density functional theory have been employed to assign the nature of the key optical transitions and suggest that the significant optical nonlinearities observed for the ruthenium-containing complexes correlate with the low-energy formally Ru → NO<sub>2</sub> band which possesses strong MLCT character, while the more moderate nonlinearities of the gold complexes correlate with a band higher in energy that is primarily ILCT in character.</p>

Topics
  • density
  • impedance spectroscopy
  • nickel
  • x-ray diffraction
  • theory
  • gold
  • density functional theory
  • alkyne
  • Ruthenium