People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sadeghi, Hatef
University of Warwick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping modecitations
- 2022Low Thermal Conductivity in Franckeite Heterostructurescitations
- 2022Thermoelectric properties of organic thin films enhanced by π-π stackingcitations
- 2020Radical enhancement of molecular thermoelectric efficiencycitations
- 2019Discriminating Seebeck Sensing of Moleculescitations
- 2019Quantum and Phonon Interference Enhanced Molecular-Scale Thermoelectricitycitations
- 2019Unusual length dependence of the conductance in cumulene molecular wirescitations
- 2019Magic Number Theory of Superconducting Proximity Effects and Wigner Delay Times in Graphene-Like Moleculescitations
- 2018Stable-radicals increase the conductance and Seebeck coefficient of graphene nanoconstrictionscitations
- 2018Toward High Thermoelectric Performance of Thiophene and Ethylenedioxythiophene (EDOT) Molecular Wirescitations
- 2018Connectivity-driven bi-thermoelectricity in heteroatom-substituted molecular junctionscitations
- 2017Tuning the Seebeck coefficient of naphthalenediimide by electrochemical gating and dopingcitations
- 2017High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wirescitations
- 2017Thermoelectricity in vertical graphene-C60-graphene architecturescitations
- 2016Theory of electron and phonon transport in nano and molecular quantum devices
- 2016Cross-plane enhanced thermoelectricity and phonon suppression in graphene/MoS2 van der Waals heterostructurescitations
- 2013Classic and quantum capacitances in bernal bilayer and trilayer graphene field effect transistorcitations
Places of action
Organizations | Location | People |
---|
article
Discriminating Seebeck Sensing of Molecules
Abstract
One of the fundamental challenges of molecular-scale sensors is the junction to junction variability leading to variations in their electrical conductance by up to a few orders of magnitude. In contrast, thermal voltage measurements of single and many molecule junctions show that this variation in the Seebeck coefficient is smaller. Particularly, the sign of the Seebeck coefficient is often resilient against conformational changes. In this paper, we demonstrate that this robust molecular feature can be utilised in an entirely new direction of discriminating molecular sensing of gas and bio-molecules. We show that the positive sign of the Seebeck coefficient in the presence of cytosine nucleobases changes to a negative one when cancerous cytosine nucleobases absorbed on the molecular wire formed by metalloporphyrins. Furthermore, the sign of Seebeck coefficient changes when Chlorine gas interacts with Mn-porphyrin molecular wire. The change in the sign of Seebeck coefficient is due to the formation of spin driven bound states with energies close to the Fermi energy of electrodes. Seebeck sensing is a generic concept and opens new avenues for molecular sensing with huge potential applications in the years ahead.