Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mahata, Avik

  • Google
  • 4
  • 3
  • 118

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Modified embedded-atom method interatomic potentials for Al-Cu, Al-Fe and Al-Ni binary alloys: from room temperature to melting point54citations
  • 2022Liquid ordering induced heterogeneities in homogeneous nucleation during solidification of pure metals17citations
  • 2022Liquid ordering induced heterogeneities in homogeneous nucleation during solidification of pure metals17citations
  • 2018Probing the chirality-dependent elastic properties and crack propagation behavior of single and bilayer stanene30citations

Places of action

Chart of shared publication
Zaeem, Mohsen Asle
2 / 3 shared
Mukhopadhyay, Tanmoy
4 / 43 shared
Asle Zaeem, Mohsen
1 / 1 shared
Chart of publication period
2022
2018

Co-Authors (by relevance)

  • Zaeem, Mohsen Asle
  • Mukhopadhyay, Tanmoy
  • Asle Zaeem, Mohsen
OrganizationsLocationPeople

article

Probing the chirality-dependent elastic properties and crack propagation behavior of single and bilayer stanene

  • Mahata, Avik
  • Mukhopadhyay, Tanmoy
Abstract

Stanene, a quasi-two-dimensional honeycomb-like structure of tin belonging to the family of 2D-Xenes (X = Si, Ge, Sn) has recently been reported to show promising electronic, optical and mechanical properties. This paper investigates the elastic moduli and crack propagation behaviour of single layer and bilayer stanene based on molecular dynamics simulations, which have been performed using the Tersoff bond order potential (BOP). We have parameterized the interlayer van der Waals interactions for the bilayer Lennard-Jones potential in the case of bilayer stanene. Density functional calculations are performed to fit the Lennard-Jones parameters for the properties which are not available from the scientific literature. The effect of temperature and strain rate on the mechanical properties of stanene is investigated for both single layer and bilayer stanene in the armchair and zigzag directions. The results reveal that both the fracture strength and strain of stanene decrease with increasing temperature, while at higher loading rate, the material is found to exhibit higher fracture strength and strain. The effect of chirality on the elastic moduli of stanene is explained on the basis of a physics-based analytical approach, wherein the fundamental interaction between the shear modulus and Young's modulus is elucidated. To provide a realistic perspective, we have investigated the compound effect of uncertainty on the elastic moduli of stanene based on an efficient analytical approach. Large-scale Monte Carlo simulations are carried out considering different degrees of stochasticity. The in-depth results on mechanical properties presented in this article will further aid the adoption of stanene as a potential nano-electro-optical substitute with exciting features such as 2D topological insulating properties with a large bandgap, the capability to support enhanced thermoelectric performance, topological superconductivity and a quantum anomalous Hall effect at near-room-temperature.

Topics
  • density
  • impedance spectroscopy
  • compound
  • simulation
  • molecular dynamics
  • crack
  • strength
  • two-dimensional
  • tin
  • superconductivity
  • superconductivity