Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sangtarash, Sara

  • Google
  • 7
  • 35
  • 192

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2022Low Thermal Conductivity in Franckeite Heterostructures11citations
  • 2022Thermoelectric properties of organic thin films enhanced by π-π stacking10citations
  • 2020Radical enhancement of molecular thermoelectric efficiency36citations
  • 2019Unusual length dependence of the conductance in cumulene molecular wires52citations
  • 2019Magic Number Theory of Superconducting Proximity Effects and Wigner Delay Times in Graphene-Like Molecules1citations
  • 2018Connectivity-driven bi-thermoelectricity in heteroatom-substituted molecular junctions33citations
  • 2016Cross-plane enhanced thermoelectricity and phonon suppression in graphene/MoS2 van der Waals heterostructures49citations

Places of action

Chart of shared publication
Kolosov, Oleg Victor
2 / 29 shared
Spiece, Jean
1 / 7 shared
Evangeli, Charalambos
1 / 4 shared
Molina-Mendoza, Aday J.
1 / 3 shared
Ramrakhiyani, Kunal Lulla
1 / 1 shared
Sadeghi, Hatef
7 / 17 shared
Mucientes, Marta
1 / 3 shared
Mueller, Thomas
1 / 5 shared
Lambert, Colin John
5 / 31 shared
Lamantia, Angelo
1 / 3 shared
Forcieri, Leonardo
1 / 1 shared
Jarvis, Samuel Paul
1 / 2 shared
Dekkiche, Hervé
1 / 1 shared
Bryce, Martin R.
1 / 3 shared
Wang, Xintai
1 / 4 shared
Robinson, Bj
1 / 13 shared
Xu, W.
1 / 33 shared
Hou, S.
1 / 2 shared
Leary, E.
1 / 1 shared
Christensen, K. E.
1 / 1 shared
González, M. T.
1 / 1 shared
Wu, Qingqing
1 / 2 shared
Agraït, N.
1 / 1 shared
Nichols, R. J.
1 / 3 shared
Tejerina, L.
1 / 1 shared
Higgins, S. J.
1 / 1 shared
Anderson, H. L.
1 / 5 shared
Rubio-Bollinger, G.
1 / 1 shared
Cserti, J.
1 / 1 shared
Koltai, J.
1 / 1 shared
Kukucska, G.
1 / 1 shared
Tajkov, Z.
1 / 1 shared
Kormányos, A.
1 / 1 shared
Alanazy, A.
1 / 1 shared
Rakyta, P.
1 / 1 shared
Chart of publication period
2022
2020
2019
2018
2016

Co-Authors (by relevance)

  • Kolosov, Oleg Victor
  • Spiece, Jean
  • Evangeli, Charalambos
  • Molina-Mendoza, Aday J.
  • Ramrakhiyani, Kunal Lulla
  • Sadeghi, Hatef
  • Mucientes, Marta
  • Mueller, Thomas
  • Lambert, Colin John
  • Lamantia, Angelo
  • Forcieri, Leonardo
  • Jarvis, Samuel Paul
  • Dekkiche, Hervé
  • Bryce, Martin R.
  • Wang, Xintai
  • Robinson, Bj
  • Xu, W.
  • Hou, S.
  • Leary, E.
  • Christensen, K. E.
  • González, M. T.
  • Wu, Qingqing
  • Agraït, N.
  • Nichols, R. J.
  • Tejerina, L.
  • Higgins, S. J.
  • Anderson, H. L.
  • Rubio-Bollinger, G.
  • Cserti, J.
  • Koltai, J.
  • Kukucska, G.
  • Tajkov, Z.
  • Kormányos, A.
  • Alanazy, A.
  • Rakyta, P.
OrganizationsLocationPeople

article

Connectivity-driven bi-thermoelectricity in heteroatom-substituted molecular junctions

  • Lambert, Colin John
  • Sangtarash, Sara
  • Sadeghi, Hatef
Abstract

To improve the thermoelectric performance of molecular junctions formed by polyaromatic hydrocarbon (PAH) cores, we present a new strategy for enhancing their Seebeck coefficient by utilizing connectivities with destructive quantum interference combined with heteroatom substitution. Starting from the parent PAH, with a vanishing mid-gap Seebeck coefficient, we demonstrate that the corresponding daughter molecule obtained after heteroatom substitution possesses a non-zero, mid-gap Seebeck coefficient. For the first time, we demonstrate a “bi-thermoelectric” property, where for a given heteroatom and parent PAH, the sign of the mid-gap Seebeck coefficient depends on connectivity and therefore the daughter can exhibit both positive and negative Seebeck coefficients. This bi-thermoelectric property is important for the design of tandem thermoelectric devices, where materials with both positive and negative Seebeck coefficients are utilized to boost the thermovoltage. Simple parameter-free rules for predicting the Seebeck coefficient of such molecules are presented, which form a powerful tool for designing efficient molecular thermoelectric devices.

Topics
  • impedance spectroscopy
  • thermoelectric property