People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kar, Mega
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2018Ionic liquid electrolytes supporting high energy density in sodium-ion batteries based on sodium vanadium phosphate compositescitations
- 2018The effect of cation chemistry on physicochemical behaviour of superconcentrated NaFSI based ionic liquid electrolytes and the implications for Na battery performancecitations
- 2016Reduction of oxygen in a trialkoxy ammonium-based ionic liquid and the role of watercitations
- 2016Stable zinc cycling in novel alkoxy-ammonium based ionic liquid electrolytescitations
Places of action
Organizations | Location | People |
---|
article
Ionic liquid electrolytes supporting high energy density in sodium-ion batteries based on sodium vanadium phosphate composites
Abstract
<p>Sodium-ion batteries (SIBs) are widely considered as alternative, sustainable, and cost-effective energy storage devices for large-scale energy storage applications. In this work, an easily fabricated sodium vanadium phosphate-carbon composite (NVP@C) cathode material shows a good rate capability, and long cycle life (89% capacity retention after 5000 cycles at a rate of 10C) with an ionic liquid electrolyte for room temperature sodium metal batteries. The electrochemical performance of a full-cell sodium ion battery with NVP@C and hard carbon electrodes was also investigated at room temperature with an ionic liquid electrolyte. The battery exhibited 368 W h kg<sup>-1</sup> energy density and 75% capacity retention after 100 cycles, outperforming the organic electrolyte-based devices.</p>