Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Moeller, Arne

  • Google
  • 1
  • 8
  • 19

Osnabrück University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018The surface chemistry of iron oxide nanocrystals19citations

Places of action

Chart of shared publication
Tahir, M. N.
1 / 5 shared
Lu, H.
1 / 15 shared
Ksenofontova, V.
1 / 1 shared
Weidner, Tobias
1 / 29 shared
Shylin, S. I.
1 / 3 shared
Panthoefer, M.
1 / 1 shared
Tremel, W.
1 / 15 shared
Daniel, P.
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Tahir, M. N.
  • Lu, H.
  • Ksenofontova, V.
  • Weidner, Tobias
  • Shylin, S. I.
  • Panthoefer, M.
  • Tremel, W.
  • Daniel, P.
OrganizationsLocationPeople

article

The surface chemistry of iron oxide nanocrystals

  • Tahir, M. N.
  • Lu, H.
  • Ksenofontova, V.
  • Weidner, Tobias
  • Shylin, S. I.
  • Panthoefer, M.
  • Tremel, W.
  • Moeller, Arne
  • Daniel, P.
Abstract

<p>The effect of surface functionalization on the structural and magnetic properties of catechol-functionalized iron oxide magnetic (γ-Fe<sub>2</sub>O<sub>3</sub>) nanocrystals was investigated. γ-Fe<sub>2</sub>O<sub>3</sub> nanocrystals (NCs) were synthesized from iron acetyl acetonate in phenyl ether with 1,2-tetradecanediol, oleic acid, and oleylamine. X-ray powder diffraction in combination with Mössbauer spectroscopy revealed the presence of γ-Fe<sub>2</sub>O<sub>3</sub> (maghemite) particles only. Replacement of oleic acid (OA) with catechol-type 3,4-dihydroxyhydrocinnamic acid (DHCA) or polydentate polydopamine acrylate (PDAm) surface ligands leads to a pronounced change of the magnetic behavior of the γ-Fe<sub>2</sub>O<sub>3</sub> nanocrystals and separated them into two distinctive magnetic entities. XPS and Mössbauer spectroscopy revealed the shell to be reduced with a magnetite (Fe<sub>3</sub>O<sub>4</sub>) contribution of up to 33% of the total mass while the core remained maghemite (γ-Fe<sub>2</sub>O<sub>3</sub>). The magnetic interaction between the maghemite core and the magnetite shell strongly reduced the anisotropy constant of the nanocrystals and the effective magnetization. Our experiments show that the surface chemistry strongly affects the phase distribution and the macroscopic magnetic properties of iron oxide nanopowders.</p>

Topics
  • surface
  • phase
  • experiment
  • x-ray photoelectron spectroscopy
  • iron
  • functionalization
  • magnetization
  • Mössbauer spectroscopy