People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Massera, J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024Biophotonic composite scaffolds for controlled nitric oxide release upon NIR excitation
- 2024Crystallization mechanism of B12.5 bioactive borosilicate glasses and its impact on in vitro degradationcitations
- 2023Crystallization mechanism of B12.5 bioactive borosilicate glasses and its impact on in vitro degradationcitations
- 2023Chemical interactions in composites of gellan gum and bioactive glass: self-crosslinking and in vitro dissolutioncitations
- 2023New Mg/Sr phosphate bioresorbable glass system with enhanced sintering propertiescitations
- 2022Influence of Phosphate on Network Connectivity and Glass Transition in Highly Polymerized Aluminosilicate Glassescitations
- 2022Specific trends in phosphate glass crystallizationcitations
- 2022Robocasting of multicomponent sol-gel–derived silicate bioactive glass scaffolds for bone tissue engineeringcitations
- 2021Surface Modification of Bioresorbable Phosphate Glasses for Controlled Protein Adsorptioncitations
- 2021Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glassescitations
- 2021Specific trends in phosphate glass crystallizationcitations
- 2021Specific trends in phosphate glass crystallizationcitations
- 2020Nucleation and growth behavior of Er3+doped oxyfluorophosphate glassescitations
- 2020Dissolution, bioactivity and osteogenic properties of composites based on polymer and silicate or borosilicate bioactive glasscitations
- 2020Phosphate/oxyfluorophosphate glass crystallization and its impact on dissolution and cytotoxicitycitations
- 2019Core-clad phosphate glass fibers for biosensingcitations
- 2019Fabrication and characterization of new phosphate glasses and glass-ceramics suitable for drawing optical and biophotonic fibers
- 2018In vitro Evaluation of Porous borosilicate, borophosphate and phosphate Bioactive Glasses Scaffolds fabricated using Foaming Agent for Bone Regenerationcitations
- 2018Processing and Characterization of Bioactive Borosilicate Glasses and Scaffolds with Persistent Luminescencecitations
- 2018Persistent luminescent particles containing bioactive glassescitations
- 2018Luminescence of Er3+ doped oxyfluoride phosphate glasses and glass-ceramicscitations
- 2017Crystallization and sintering of borosilicate bioactive glasses for application in tissue engineeringcitations
- 2017Thermal, structural and in vitro dissolution of antimicrobial copper-doped and slow resorbable iron-doped phosphate glassescitations
- 2016Novel oxyfluorophosphate glasses and glass-ceramicscitations
- 2016Effect of the glass melting condition on the processing of phosphate-based glass-ceramics with persistent luminescence propertiescitations
- 2016Thermal, structural and optical properties of Er3+ doped phosphate glasses containing silver nanoparticlescitations
- 2015Processing and characterization of phosphate glasses containing CaAl2O4:Eu2+,Nd3+ and SrAl2O4:Eu2+,Dy3+ microparticlescitations
Places of action
Organizations | Location | People |
---|
article
Crystallization and sintering of borosilicate bioactive glasses for application in tissue engineering
Abstract
International audience ; Typical silicate bioactive glasses are known to crystallize readily during the processing of porous scaffolds. While such crystallization does not fully suppress the bioactivity, the presence of significantly large amounts of crystals leads to a decrease in the rate of reaction of the glass and an uncontrolled release of ions. Furthermore, due to the non-congruent dissolution of silicate glasses, these materials have been shown to remain within the surgical site even 14 years post-operation. Therefore, bioactive materials that can dissolve more effectively and have higher conversion rates are required. Within this work, boron was introduced, in the FDA approved S53P4 glass, at the expense of SiO2. The crystallization and sintering-ability of the newly developed glasses were investigated by differential thermal analysis. All the glasses were found to crystallize primarily from the surface, and the crystal phase precipitation was dependent on the quantity of B2O3 incorporated. The rate of crystallization was found to be lower for the glasses when 25, 50 and 75% of SiO2 was replaced with B2O3. These glasses were further sintered into porous scaffolds using simple heat sintering. The impact of glass particle size and heat treatment temperature on the scaffold porosity and average pore size was investigated. Scaffolds with porosity ranging from 10 to 60% and compressive strength ranging from 1 to 35 MPa were produced. The scaffolds remained amorphous during processing and their ability to rapidly precipitate hydroxycarbonate apatite was maintained. This is of particular interest in the field of tissue engineering as scaffold degradation and reaction is generally faster and offers higher controllability as opposed to the current partially/fully crystallized scaffolds obtained from the FDA approved bioactive glasses.