People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hokka, Mikko
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (52/52 displayed)
- 2024Dynamic shear failurecitations
- 2024Dynamic Behavior of Materials
- 2024Dynamic plasticity of metalscitations
- 2024On the use of an induced temperature gradient and full-field measurements to investigate and model the thermomechanical behaviour of an austenitic stainless steel 316citations
- 2024On the use of an induced temperature gradient and full-field measurements to investigate and model the thermomechanical behaviour of an austenitic stainless steel 316citations
- 2024Dynamic shear failure: The underlying physicscitations
- 2024In-situ synchrotron X-ray diffraction study of the effects of grain orientation on the martensitic phase transformations during tensile loading at different strain rates in metastable austenitic stainless steelcitations
- 2024In-situ synchrotron X-ray diffraction study of the effects of grain orientation on the martensitic phase transformations during tensile loading at different strain rates in metastable austenitic stainless steelcitations
- 2023Microscale Strain Localizations and Strain-Induced Martensitic Phase Transformation in Austenitic Steel 301LN at Different Strain Ratescitations
- 2023In situ damage characterization of CFRP under compression using high-speed optical, infrared and synchrotron X-ray phase-contrast imagingcitations
- 2023In situ damage characterization of CFRP under compression using high-speed optical, infrared and synchrotron X-ray phase-contrast imagingcitations
- 2023In-Situ X-ray Diffraction Analysis of Metastable Austenite Containing Steels Under Mechanical Loading at a Wide Strain Rate Rangecitations
- 2023Effects of strain rate and adiabatic heating on mechanical behavior of medium manganese Q&P steelscitations
- 2022High-speed thermal mapping and impact damage onset in CFRP and FFRP
- 2022Synchronized Full-Field Strain and Temperature Measurements of Commercially Pure Titanium under Tension at Elevated Temperatures and High Strain Ratescitations
- 2022Failure prediction for high-strain rate and out-of-plane compression of fibrous compositescitations
- 2022High-Speed Thermal Mapping and Impact Damage Onset in CFRP and FFRP
- 2022Impact damage resistance of novel adhesively bonded natural fibre composite – Steel hybrid laminatescitations
- 2022Impact damage resistance of novel adhesively bonded natural fibre composite:Steel hybrid laminatescitations
- 2022Strain Hardening and Adiabatic Heating of Stainless Steels After a Sudden Increase of Strain Ratecitations
- 2022Synchronized full-field strain and temperature measurements of commercially pure titanium under tension at elevated temperatures and high strain ratescitations
- 2022Effects of strain rate on strain-induced martensite nucleation and growth in 301LN metastable austenitic steelcitations
- 2021The Taylor–Quinney coefficients and strain hardening of commercially pure titanium, iron, copper, and tin in high rate compressioncitations
- 2021The Taylor–Quinney coefficients and strain hardening of commercially pure titanium, iron, copper, and tin in high rate compressioncitations
- 2021Adiabatic heating and damage onset in a pultruded glass fiber reinforced composite under compressive loading at different strain rates.citations
- 2021Experimental study of adhesively bonded natural fibre composite – steel hybrid laminatescitations
- 2021Some aspects of the behavior of metastable austenitic steels at high strain rates
- 2021Numerical modeling of the dynamic strain aging in steels at high strain rates and high temperaturescitations
- 2021Thermomechanical Behavior of Steels in Tension Studied with Synchronized Full-Field Deformation and Temperature Measurementscitations
- 2021Thermomechanical Behavior of Steels in Tension Studied with Synchronized Full-Field Deformation and Temperature Measurementscitations
- 2020Characterization of the anisotropic deformation of the right ventricle during open heart surgerycitations
- 2019Highly ductile amorphous oxide at room temperature and high strain ratecitations
- 2019Highly ductile amorphous oxide at room temperature and high strain ratecitations
- 2019Adiabatic Heating of Austenitic Stainless Steels at Different Strain Ratescitations
- 2019Optical, structural and luminescence properties of oxyfluoride phosphate glasses and glass-ceramics doped with Yb3+citations
- 2019Fluorine losses in Er3+oxyfluoride phosphate glasses and glass-ceramicscitations
- 2019Effects of Adiabatic Heating and Strain Rate on the Dynamic Response of a CoCrFeMnNi High‑Entropy Alloycitations
- 2019Uncoupling the effects of strain rate and adiabatic heating on strain induced martensitic phase transformations in a metastable austenitic steelcitations
- 2018Adhesion properties of novel steel –biocomposite hybrid structure
- 2018Effects of adiabatic heating estimated from tensile tests with continuous heatingcitations
- 2018An experimental and numerical study of the dynamic Brazilian disc test on a heterogeneous rock
- 2018Strain rate jump tests on an austenitic stainless steel with a modified tensile Hopkinson split barcitations
- 2018Effects of microstructure on the dynamic strain aging of ferritic pearlitic steels at high strain ratescitations
- 2018Persistent luminescent particles containing bioactive glassescitations
- 2018Luminescence of Er3+ doped oxyfluoride phosphate glasses and glass-ceramicscitations
- 2018Effects of Microstructure on the Dynamic Strain Aging in Ferritic-Pearlitic Steelscitations
- 2017Crystallization and sintering of borosilicate bioactive glasses for application in tissue engineeringcitations
- 2017High Temperature Dynamic Tension Behavior of Titanium Tested with Two Different Methodscitations
- 2017Continuum modelling of dynamic rock fracture under triaxial confinement
- 2017Wear of cemented tungsten carbide percussive drill–bit inserts : Laboratory and field studycitations
- 2015Effects of surface cracks and strain rate on the tensile behavior of Balmoral Red granite
- 2008EFFECTS OF COMPOSITION, TEMPERATURE AND STRAIN RATE ON THE MECHANICAL BEHAVIOR OF HIGH-ALLOYED MANGANESE STEELS
Places of action
Organizations | Location | People |
---|
article
Crystallization and sintering of borosilicate bioactive glasses for application in tissue engineering
Abstract
International audience ; Typical silicate bioactive glasses are known to crystallize readily during the processing of porous scaffolds. While such crystallization does not fully suppress the bioactivity, the presence of significantly large amounts of crystals leads to a decrease in the rate of reaction of the glass and an uncontrolled release of ions. Furthermore, due to the non-congruent dissolution of silicate glasses, these materials have been shown to remain within the surgical site even 14 years post-operation. Therefore, bioactive materials that can dissolve more effectively and have higher conversion rates are required. Within this work, boron was introduced, in the FDA approved S53P4 glass, at the expense of SiO2. The crystallization and sintering-ability of the newly developed glasses were investigated by differential thermal analysis. All the glasses were found to crystallize primarily from the surface, and the crystal phase precipitation was dependent on the quantity of B2O3 incorporated. The rate of crystallization was found to be lower for the glasses when 25, 50 and 75% of SiO2 was replaced with B2O3. These glasses were further sintered into porous scaffolds using simple heat sintering. The impact of glass particle size and heat treatment temperature on the scaffold porosity and average pore size was investigated. Scaffolds with porosity ranging from 10 to 60% and compressive strength ranging from 1 to 35 MPa were produced. The scaffolds remained amorphous during processing and their ability to rapidly precipitate hydroxycarbonate apatite was maintained. This is of particular interest in the field of tissue engineering as scaffold degradation and reaction is generally faster and offers higher controllability as opposed to the current partially/fully crystallized scaffolds obtained from the FDA approved bioactive glasses.