People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Macfarlane, Douglas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2023High performance acidic water electrooxidation catalysed by manganese–antimony oxides promoted by secondary metalscitations
- 2018Ionic liquid electrolytes supporting high energy density in sodium-ion batteries based on sodium vanadium phosphate compositescitations
- 2018The electrochemistry and performance of cobalt-based redox couples for thermoelectrochemical cellscitations
- 2018The effect of cation chemistry on physicochemical behaviour of superconcentrated NaFSI based ionic liquid electrolytes and the implications for Na battery performancecitations
- 2017Properties of High Na-Ion Content N-Propyl-N-Methylpyrrolidinium Bis(Fluorosulfonyl)Imide -Ethylene Carbonate Electrolytescitations
- 2017Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquidscitations
- 2017Metal-free black silicon for solar-powered hydrogen generationcitations
- 2016Novel Na+ ion diffusion mechanism in mixed organic-inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cellscitations
- 2016Reduction of oxygen in a trialkoxy ammonium-based ionic liquid and the role of watercitations
- 2016Stable zinc cycling in novel alkoxy-ammonium based ionic liquid electrolytescitations
- 2016Inorganic-organic ionic liquid electrolytes enabling high energy-density metal electrodes for energy storagecitations
- 2016Unexpected effect of tetraglyme plasticizer on lithium ion dynamics in PAMPS based ionomerscitations
- 2016Investigating non-fluorinated anions for sodium battery electrolytes based on ionic liquidscitations
- 2016In-situ-activated N-doped mesoporous carbon from a protic salt and its performance in supercapacitorscitations
- 2016Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid-solvent mixturescitations
- 2016Recent developments in environment-friendly corrosion inhibitors for mild steel
- 2015Spin-crossover, mesomorphic and thermoelectrical properties of cobalt(II) complexes with alkylated N3-Schiff basescitations
- 2015Evaluation of electrochemical methods for determination of the seebeck coefficient of redox electrolytescitations
- 2015Characterisation of ion transport in sulfonate based ionomer systems containing lithium and quaternary ammonium cationscitations
- 2012Electrodeposited MnOx films from ionic liquid for electrocatalytic water oxidationcitations
- 2012Electrochemical etching of aluminium alloy in ionic liquids
- 2011Anodising AA5083 aluminium alloy using ionic liquids
- 2011Electrochemical reactivity of trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate ionic liquid on glassy carbon and AZ31 magnesium alloycitations
- 2011On the use of organic ionic plastic crystals in all solid-state lithium metal batteriescitations
- 2011Anodic oxidation of AZ31 Mg alloy in ionic liquid
- 2011Crystallisation kinetics of some archetypal ionic liquidscitations
- 2011Transport properties and phase behaviour in binary and ternary ionic liquid electrolyte systems of interest in lithium batteriescitations
- 2010Potentiostatic control of ionic liquid surface film formation on ZE41 magnesium alloycitations
- 2010Long-term structural and chemical stability of DNA in hydrated ionic liquidscitations
- 2010An azo-spiro mixed ionic liquid electrolyte for lithium metal- LiFePO 4 batteriescitations
- 2010Characterization of the magnesium alloy AZ31 surface in the ionic liquid trihexyl(tetradecyl)phosphonium bis(trifluoromethanesulfonyl)amide
- 2010Proton transport properties in Zwitterion blends with Bronsted acidscitations
- 2000Experimental and theoretical investigations of the effect of deprotonation on electronic spectra and reversible potentials of photovoltaic sensitizerscitations
Places of action
Organizations | Location | People |
---|
article
Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids
Abstract
<p>Polymerized ionic liquids or poly(ionic liquids) (polyILs) have been considered as promising hosts for fabrication of gel polymer electrolytes (GPEs) containing ionic liquids. In this work, a novel GPE based on a polyIL, poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PDADMA TFSI), and a high lithium-concentration phosphonium ionic liquid, trimethyl(isobutyl)phosphonium bis(fluorosulfonyl)imide (P<sub>111i4</sub>FSI), is prepared. The composition-dependent behaviour of the GPEs is investigated by differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS) and solid-state nuclear magnetic resonance (solid-state NMR). The effects of Al<sub>2</sub>O<sub>3</sub> nano-particles on the polymer electrolyte properties are also discussed. It is shown that the introduction of high lithium-concentration ionic liquids into the polyIL can effectively decrease the glass transition temperature (T<sub>g</sub>) of the resulting GPE, leading to improved ion dynamics and higher ionic conductivity. The Al<sub>2</sub>O<sub>3</sub> nano-particles effectively enhanced the mechanical stability of the GPEs. Most importantly, although adding PDADMA TFSI to the ionic liquids decreases the diffusion coefficient of both Li<sup>+</sup> and anions, a greater decrease in the anion diffusion is observed, resulting in a higher Li<sup>+</sup> transport number (as evaluated by NMR) than that seen in the original ILs. Finally, a highly conductive free-standing GPE membrane is fabricated, and extremely stable lithium symmetrical cell performance is demonstrated.</p>