People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Harrington, George
RWTH Aachen University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Artificial p–n‐like Junction Based on Pure 2D Organic–Inorganic Halide Perovskite Structure Having Naphthalene Diimide Acceptor Moietiescitations
- 2023Revisiting point defects in ionic solids and semiconductorscitations
- 2023Revisiting point defects in ionic solids and semiconductorscitations
- 2021Heteroepitaxial Hexagonal (00.1) CuFeO2 Thin Film Grown on Cubic (001) SrTiO3 Substrate Through Translational and Rotational Domain Matchingcitations
- 2020Anisotropic Strain in Rare-Earth Substituted Ceria Thin Films Probed by Polarized Raman Spectroscopy and First-Principles Calculationscitations
- 2020Thickness-dependent microstructural properties of heteroepitaxial (00.1) CuFeO2 thin films on (00.1) sapphire by pulsed laser depositioncitations
- 2019Emergence of Rapid Oxygen Surface Exchange Kinetics during in Situ Crystallization of Mixed Conducting Thin Film Oxidescitations
- 2018Durability of template-free Fe-N-C foams for electrochemical oxygen reduction in alkaline solutioncitations
- 2017Relating microstructure to surface exchange kinetics using in situ optical absorption relaxationcitations
- 2017Impact of microstructure and crystallinity on surface exchange kinetics of strontium titanium iron oxide perovskite bycitations
- 2017Design of Sr0.7R0.3CoO3-δ(R = Tb and Er) Perovskites Performing as Cathode Materials in Solid Oxide Fuel Cellscitations
- 2014Chemistry and structure of homoepitaxial SrTiO3 films and their influence on oxide-heterostructure interfacescitations
Places of action
Organizations | Location | People |
---|
article
Impact of microstructure and crystallinity on surface exchange kinetics of strontium titanium iron oxide perovskite by
Abstract
<p>The rate of oxygen exchange at the surface of mixed conductors is a critical property impacting the performance of elevated temperature energy conversion/storage devices. Microstructural features, such as grain boundary density and crystalline quality, are expected to impact the surface exchange kinetics, but their effect has not yet been widely studied. In this work, mixed conducting perovskite SrTi<sub>0.65</sub>Fe<sub>0.35</sub>O<sub>3-δ</sub> (STF35) thin films grown by pulsed laser deposition were applied as a model system to systematically study the effect of microstructure on oxygen surface exchange kinetics. The impact of growth temperature on crystalline quality, orientation, grain size, surface roughness, and surface chemistry was evaluated by X-ray diffraction, scanning probe microscopy, transmission electron microscopy, and angle-resolved X-ray photoelectron spectroscopy (AR-XPS). A contact-free, continuous, in situ optical transmission relaxation approach was then applied to quantify the films' native surface oxygen exchange coefficients (k<sub>chem</sub>). Amorphous films, grown at low temperatures (25 °C), did not exhibit measurable oxygen exchange ability. Highly crystalline films, grown at high temperatures (800 °C), exhibited reasonable, but not optimal k<sub>chem</sub>. The most rapid k<sub>chem</sub> was found for intermediate growth conditions, i.e., for amorphous-grown thin films just after crystallization at higher temperatures (550 °C) or for films grown near (580 °C) the crystallization temperature. Combined with the AR-XPS results showing greater surface Sr concentrations in films grown at higher temperatures, results suggest rapid k<sub>chem</sub> is obtained as a trade-off between good crystalline quality and low Sr surface concentration. Degradation of k<sub>chem</sub> over time was correlated to increased Sr surface concentration. Additionally, (100)-oriented epitaxial vs. nano-columnar grained (110)-oriented thin films with excellent crystalline quality exhibited very similar k<sub>chem</sub> and aging behavior, suggesting that neither grain boundaries nor film orientation cause observable changes in surface exchange kinetics in this composition.</p>