People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bernaerts, Katrien
Maastricht University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Investigation of monomer reactivity, polymer microstructure and solubility in the copolymerization of 1,5-dioxepan-2-one with alkyl substituted lactonescitations
- 2022Condensation Polyesterscitations
- 2022Additive Manufacturing of α-Amino Acid Based Poly(ester amide)s for Biomedical Applicationscitations
- 2022The effect of carbon fiber content on physico-mechanical properties of recycled poly(ethylene terephthalate) composites additively manufactured with fused filament fabricationcitations
- 2021Shaping and properties of thermoplastic scaffolds in tissue regeneration: The effect of thermal history on polymer crystallization, surface characteristics and cell fatecitations
- 2021Development of marine oligosaccharides for potential wound healing biomaterials engineeringcitations
- 2021Post-Modification of Biobased Pyrazines and Their Polyesterscitations
- 2021The effect of copolymerization of cyclic dioxolane moieties on polyamide propertiescitations
- 2020Biobased Pyrazine-Containing Polyesterscitations
- 2018Synthesis of isotactic polypropylene-block-polystyrene block copolymers as compatibilizers for isotactic polypropylene/polyphenylene oxide blendscitations
- 2017Increasing the solubility range of polyesters by tuning their microstructure with co-monomers
- 2017Increasing the solubility range of polyesters by tuning their microstructure with co-monomers
- 2017Increasing the solubility range of polyesters by tuning their microstructure with comonomerscitations
- 2017Increasing the solubility range of polyesters by tuning their microstructure with comonomerscitations
Places of action
Organizations | Location | People |
---|
article
Increasing the solubility range of polyesters by tuning their microstructure with comonomers
Abstract
The solubility range of ω-pentadecalactone (ω-PDL) based polymers is increased by copolymerization with a smaller branched lactone, δ-undecalactone (δ-UDL). The copolyester microstructure was assessed by 13C NMR/MALDI-ToF MS and indicates a block-like or random-like structure depending on the feed ratio. DSC analysis reveals a considerable decrease in the crystallinity of the copolyesters which can be attributed to the lack of stereoselectivity of the alkyl substituent of δ-UDL hampering chain packing. Consequently, the ω-PDL-based copolyesters present a broader solubility range towards polar aprotic solvents as demonstrated by the Hansen solubility parameter analysis. Finally, the effect of the ring size and position of the substituents of the comonomer lactone on the solubility range of ω-PDL-based copolyesters was investigated by copolymerization with a β,δ-substituted-ε-caprolactone. This broadening of the solubility range of ω-PDL-based copolyesters should enable the use of this biobased macrolactone in applications such as additives in coatings.